Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Pediatr Nephrol ; 37(11): 2643-2656, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35211795

RESUMO

BACKGROUND: Variants in genes encoding nuclear pore complex (NPC) proteins are a newly identified cause of paediatric steroid-resistant nephrotic syndrome (SRNS). Recent reports describing NUP93 variants suggest these could be a significant cause of paediatric onset SRNS. We report NUP93 cases in the UK and demonstrate in vivo functional effects of Nup93 depletion in a fly (Drosophila melanogaster) nephrocyte model. METHODS: Three hundred thirty-seven paediatric SRNS patients from the National cohort of patients with Nephrotic Syndrome (NephroS) were whole exome and/or whole genome sequenced. Patients were screened for over 70 genes known to be associated with Nephrotic Syndrome (NS). D. melanogaster Nup93 knockdown was achieved by RNA interference using nephrocyte-restricted drivers. RESULTS: Six novel homozygous and compound heterozygous NUP93 variants were detected in 3 sporadic and 2 familial paediatric onset SRNS characterised histologically by focal segmental glomerulosclerosis (FSGS) and progressing to kidney failure by 12 months from clinical diagnosis. Silencing of the two orthologs of human NUP93 expressed in D. melanogaster, Nup93-1, and Nup93-2 resulted in significant signal reduction of up to 82% in adult pericardial nephrocytes with concomitant disruption of NPC protein expression. Additionally, nephrocyte morphology was highly abnormal in Nup93-1 and Nup93-2 silenced flies surviving to adulthood. CONCLUSION: We expand the spectrum of NUP93 variants detected in paediatric onset SRNS and demonstrate its incidence within a national cohort. Silencing of either D. melanogaster Nup93 ortholog caused a severe nephrocyte phenotype, signaling an important role for the nucleoporin complex in podocyte biology. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Drosophila melanogaster , Síndrome Nefrótica , Complexo de Proteínas Formadoras de Poros Nucleares , Podócitos , Adulto , Animais , Criança , Modelos Animais de Doenças , Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Podócitos/metabolismo
2.
PLoS Genet ; 15(7): e1008269, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31299050

RESUMO

Development of eye tissue is initiated by a conserved set of transcription factors termed retinal determination network (RDN). In the fruit fly Drosophila melanogaster, the zinc-finger transcription factor Glass acts directly downstream of the RDN to control identity of photoreceptor as well as non-photoreceptor cells. Tight control of spatial and temporal gene expression is a critical feature during development, cell-fate determination as well as maintenance of differentiated tissues. The molecular mechanisms that control expression of glass, however, remain largely unknown. We here identify complex regulatory mechanisms controlling expression of the glass locus. All information to recapitulate glass expression are contained in a compact 5.2 kb cis-acting genomic element by combining different cell-type specific and general enhancers with repressor elements. Moreover, the immature RNA of the locus contains an alternative small open reading frame (smORF) upstream of the actual glass translation start, resulting in a small peptide instead of the three possible Glass protein isoforms. CRISPR/Cas9-based mutagenesis shows that the smORF is not required for the formation of functioning photoreceptors, but is able to attenuate effects of glass misexpression. Furthermore, editing the genome to generate glass loci eliminating either one or two isoforms shows that only one of the three proteins is critical for formation of functioning photoreceptors, while removing the two other isoforms did not cause defects in developmental or photoreceptor function. Our results show that eye development and function is largely unaffected by targeted manipulations of critical features of the glass transcript, suggesting a strong selection pressure to allow the formation of a functioning eye.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Olho/crescimento & desenvolvimento , Processamento Alternativo , Animais , Diferenciação Celular , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mutagênese Sítio-Dirigida , Células Fotorreceptoras/metabolismo
3.
Biomacromolecules ; 21(8): 3186-3196, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32786674

RESUMO

Neurodegenerative diseases are generally characterized by a progressive loss of neuronal subpopulations, with no available cure to date. One of the main reasons for the limited clinical outcomes of new drug formulations is the lack of appropriate in vitro human cell models for research and validation. Stem cell technologies provide an opportunity to address this challenge by using patient-derived cells as a platform to test various drug formulations, including particle-based drug carriers. The therapeutic efficacy of drug delivery systems relies on efficient cellular uptake of the carrier and can be dependent on its size, shape, and surface chemistry. Although considerable efforts have been made to understand the effects of the physiochemical properties of particles on two-dimensional cell culture models, little is known of their effect in three-dimensional (3D) cell models of neurodegenerative diseases. Herein, we investigated the role of particle size (235-1000 nm), charge (cationic and anionic), and density (1.05 and 1.8 g cm-3) on the interactions of particles with human embryonic stem cell-derived 3D cell cultures of sensory neurons, called sensory neurospheres (sNSP). Templated layer-by-layer particles, with silica or polystyrene cores, and self-assembled glycogen/DNA polyplexes were used. Particles with sizes <280 nm effectively penetrated sNSP. Additionally, effective plasmid DNA delivery was observed up to 6 days post-transfection with glycogen/DNA polyplexes. The findings provide guidance in nanoparticle design for therapies aimed at neurodegenerative diseases, in particular Friedreich's ataxia, whereby sensory neurons are predominantly affected. They also demonstrate the application of 3D models of human sensory neurons in preclinical drug development.


Assuntos
Nanopartículas , Humanos , Neurônios , Tamanho da Partícula , Dióxido de Silício , Células-Tronco
4.
Stem Cell Res ; 79: 103477, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936158

RESUMO

Friedreich's ataxia (FRDA) is a rare neurodegenerative disease caused by an expansion of a GAA repeat sequence within the Frataxin (FXN) gene. Prominent regions of neurodegeneration include sensory neurons within the dorsal root ganglia. Here we present a set of genetically modified FRDA induced pluripotent stem cell (iPSC) lines that carry an inducible neurogenin-2 (NGN2) expression cassette. Exogenous expression of NGN2 in iPSC derived neural crest progenitors efficiently generates functionally mature sensory neurons. These cell lines will provide a streamlined source of FRDA iPSC sensory neurons for studying both disease mechanism and screening potential therapeutics.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Ataxia de Friedreich , Células-Tronco Pluripotentes Induzidas , Proteínas do Tecido Nervoso , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Ataxia de Friedreich/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Linhagem Celular , Diferenciação Celular , Frataxina
5.
Stem Cell Res ; 75: 103312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244534

RESUMO

The pro-neural transcription factor neurogenin-2 (NGN2) possesses the ability to rapidly and effectively transform stem cells into fully operational neurons. Here we report the successful generation of a modified H9 human embryonic H9 stem cell line containing a doxycycline (DOX) inducible NGN2 expression construct featuring a floxed Blasticidin/mApple selection module in the safe-harbor locus CLYBL. This cell line retains its pluripotent state in the absence of DOX, yet readily transitions into a neuronal state upon DOX introduction.


Assuntos
Doxiciclina , Edição de Genes , Humanos , Doxiciclina/farmacologia , Linhagem Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular/fisiologia
6.
Int J Biochem Cell Biol ; 174: 106617, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009182

RESUMO

Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly brain cancers in children for which there is no effective treatment. This can partly be attributed to preclinical models that lack essential elements of the in vivo tissue environment, resulting in treatments that appear promising preclinically, but fail to result in effective cures. Recently developed co-culture models combining stem cell-derived brain organoids with brain cancer cells provide tissue dimensionality and a human-relevant tissue-like microenvironment. As these models are technically challenging, we aimed to establish whether interaction with the organoid influences DIPG biology and thus warrants their use. To address this question DIPG24 cells were cultured with pluripotent stem cell-derived cortical organoids. We created "mosaic" co-cultures enriched for tumour cell-neuronal cell interactions versus "assembloid" co-cultures enriched for tumour cell-tumour cell interactions. Sequential window acquisition of all theoretical mass spectra (SWATH-MS) was used to analyse the proteomes of DIPG fractions isolated by flow-assisted cell sorting. Control proteomes from DIPG spheroids were compared with DIPG cells isolated from mosaic and assembloid co-cultures. This suggested changes in cell interaction with the external environment reflected by decreased gene ontology terms associated with adhesion and extracellular matrix, and increased DNA synthesis and replication, in DIPG24 cells under either co-culture condition. By contrast, the mosaic co-culture was associated with neuron-specific brahma-associated factor (nBAF) complex signalling, a process associated with neuronal maturation. We propose that co-culture with brain organoids is a valuable tool to parse the contribution of the brain microenvironment to DIPG tumour biology.


Assuntos
Neoplasias do Tronco Encefálico , Técnicas de Cocultura , Organoides , Proteômica , Humanos , Organoides/metabolismo , Organoides/patologia , Proteômica/métodos , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/patologia , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Linhagem Celular Tumoral , Encéfalo/metabolismo , Encéfalo/patologia , Proteoma/metabolismo , Glioma/patologia , Glioma/metabolismo , Microambiente Tumoral
7.
Biofabrication ; 16(4)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39084624

RESUMO

Three-dimensional (3D) tissue models have gained recognition for their improved ability to mimic the native cell microenvironment compared to traditional two-dimensional models. This progress has been driven by advances in tissue-engineering technologies such as 3D bioprinting, a promising method for fabricating biomimetic living tissues. While bioprinting has succeeded in generating various tissues to date, creating neural tissue models remains challenging. In this context, we present an accelerated approach to fabricate 3D sensory neuron (SN) structures using a transgenic human pluripotent stem cell (hPSC)-line that contains an inducible Neurogenin-2 (NGN2) expression cassette. The NGN2 hPSC line was first differentiated to neural crest cell (NCC) progenitors, then incorporated into a cytocompatible gelatin methacryloyl-based bioink for 3D bioprinting. Upregulated NGN2 expression in the bioprinted NCCs resulted in induced SN (iSN) populations that exhibited specific cell markers, with 3D analysis revealing widespread neurite outgrowth through the scaffold volume. Calcium imaging demonstrated functional activity of iSNs, including membrane excitability properties and voltage-gated sodium channel (NaV) activity. This efficient approach to generate 3D bioprinted iSN structures streamlines the development of neural tissue models, useful for the study of neurodevelopment and disease states and offering translational potential.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Bioimpressão , Proteínas do Tecido Nervoso , Impressão Tridimensional , Células Receptoras Sensoriais , Alicerces Teciduais , Humanos , Bioimpressão/métodos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/citologia , Proteínas do Tecido Nervoso/metabolismo , Alicerces Teciduais/química , Linhagem Celular , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Engenharia Tecidual/métodos , Gelatina/química , Crista Neural/citologia , Crista Neural/metabolismo
8.
Heliyon ; 10(12): e32680, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975076

RESUMO

Repressor element-1 silencing transcription factor (REST) is a transcriptional repressor involved in neurodevelopment and neuroprotection. REST forms a complex with the REST corepressors, CoREST1, CoREST2, or CoREST3 (encoded by RCOR1, RCOR2, and RCOR3, respectively). Emerging evidence suggests that the CoREST family can target unique genes independently of REST, in various neural and glial cell types during different developmental stages. However, there is limited knowledge regarding the expression and function of the CoREST family in human neurodevelopment. To address this gap, we employed 2D and 3D human pluripotent stem cell (hPSC) models to investigate REST and RCOR gene expression levels. Our study revealed a significant increase in RCOR3 expression in glutamatergic cortical and GABAergic ventral forebrain neurons, as well as mature functional NGN2-induced neurons. Additionally, a simplified astrocyte transdifferentiation protocol resulted in a significant decrease in RCOR2 expression following differentiation. REST expression was notably reduced in mature neurons and cerebral organoids. In summary, our findings provide the first insights into the cell-type-specific expression patterns of RCOR genes in human neuronal and glial differentiation. Specifically, RCOR3 expression increases in neurons, while RCOR2 levels decrease in astrocytes. The dynamic expression patterns of REST and RCOR genes during hPSC neuronal and glial differentiation underscore the potential distinct roles played by REST and CoREST proteins in regulating the development of these cell types in humans.

9.
J Insect Physiol ; 143: 104453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341969

RESUMO

Insect nephrocytes are ultrafiltration cells that remove circulating proteins and exogenous toxins from the haemolymph. Experimental disruption of nephrocyte development or function leads to systemic impairment of insect physiology as evidenced by cardiomyopathy, chronic activation of immune signalling and shortening of lifespan. The genetic and structural basis of the nephrocyte's ultrafiltration mechanism is conserved between arthropods and mammals, making them an attractive model for studying human renal function and systemic clearance mechanisms in general. Although dynamic changes to intracellular calcium are fundamental to the function of many cell types, there are currently no studies of intracellular calcium signalling in nephrocytes. In this work we aimed to characterise calcium signalling in the pericardial nephrocytes of Drosophila melanogaster. To achieve this, a genetically encoded calcium reporter (GCaMP6) was expressed in nephrocytes to monitor intracellular calcium both in vivo within larvae and in vitro within dissected adults. Larval nephrocytes exhibited stochastically timed calcium waves. A calcium signal could be initiated in preparations of adult nephrocytes and abolished by EGTA, or the store operated calcium entry (SOCE) blocker 2-APB, as well as RNAi mediated knockdown of the SOCE genes Stim and Orai. Neither the presence of calcium-free buffer nor EGTA affected the binding of the endocytic cargo albumin to nephrocytes but they did impair the subsequent accumulation of albumin within nephrocytes. Pre-treatment with EGTA, calcium-free buffer or 2-APB led to significantly reduced albumin binding. Knock-down of Stim and Orai was non-lethal, caused an increase to nephrocyte size and reduced albumin binding, reduced the abundance of the endocytic cargo receptor Amnionless and disrupted the localisation of Dumbfounded at the filtration slit diaphragm. These data indicate that pericardial nephrocytes exhibit stochastically timed calcium waves in vivo and that SOCE mediates the localisation of the endocytic co-receptor Amnionless. Identifying the signals both up and downstream of SOCE may highlight mechanisms relevant to the renal and excretory functions of a broad range of species, including humans.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Albuminas/metabolismo , Sinalização do Cálcio , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Ácido Egtázico/metabolismo , Endocitose , Larva/metabolismo , Mamíferos/metabolismo
10.
Stem Cell Reports ; 17(1): 14-34, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34971564

RESUMO

Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a "one-glove-fits-all" approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular/genética , Linhagem da Célula/genética , Terapia Baseada em Transplante de Células e Tecidos , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
11.
Front Cell Neurosci ; 14: 600895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362470

RESUMO

Sensory perception is fundamental to everyday life, yet understanding of human sensory physiology at the molecular level is hindered due to constraints on tissue availability. Emerging strategies to study and characterize peripheral neuropathies in vitro involve the use of human pluripotent stem cells (hPSCs) differentiated into dorsal root ganglion (DRG) sensory neurons. However, neuronal functionality and maturity are limited and underexplored. A recent and promising approach for directing hPSC differentiation towards functionally mature neurons involves the exogenous expression of Neurogenin-2 (NGN2). The optimized protocol described here generates sensory neurons from hPSC-derived neural crest (NC) progenitors through virally induced NGN2 expression. NC cells were derived from hPSCs via a small molecule inhibitor approach and enriched for migrating NC cells (66% SOX10+ cells). At the protein and transcript level, the resulting NGN2 induced sensory neurons (NGN2iSNs) express sensory neuron markers such as BRN3A (82% BRN3A+ cells), ISLET1 (91% ISLET1+ cells), TRKA, TRKB, and TRKC. Importantly, NGN2iSNs repetitively fire action potentials (APs) supported by voltage-gated sodium, potassium, and calcium conductances. In-depth analysis of the molecular basis of NGN2iSN excitability revealed functional expression of ion channels associated with the excitability of primary afferent neurons, such as Nav1.7, Nav1.8, Kv1.2, Kv2.1, BK, Cav2.1, Cav2.2, Cav3.2, ASICs and HCN among other ion channels, for which we provide functional and transcriptional evidence. Our characterization of stem cell-derived sensory neurons sheds light on the molecular basis of human sensory physiology and highlights the suitability of using hPSC-derived sensory neurons for modeling human DRG development and their potential in the study of human peripheral neuropathies and drug therapies.

12.
Exp Gerontol ; 109: 59-66, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29032244

RESUMO

Tissue fibrosis, an accumulation of extracellular matrix proteins such as collagen, accompanies cardiac ageing in humans and this is linked to an increased risk of cardiac failure. The mechanisms driving age-related tissue fibrosis and cardiac dysfunction are unclear, yet clinically important. Drosophila is amenable to the study of cardiac ageing as well as collagen deposition; however it is unclear whether collagen accumulates in the ageing Drosophila heart. This work examined collagen deposition and cardiac function in ageing Drosophila, in the context of reduced expression of collagen-interacting protein SPARC (Secreted Protein Acidic and Rich in Cysteine) an evolutionarily conserved protein linked with fibrosis. Heart function was measured using high frame rate videomicroscopy. Collagen deposition was monitored using a fluorescently-tagged collagen IV reporter (encoded by the Viking gene) and staining of the cardiac collagen, Pericardin. The Drosophila heart accumulated collagen IV and Pericardin as flies aged. Associated with this was a decline in cardiac function. SPARC heterozygous flies lived longer than controls and showed little to no age-related cardiac dysfunction. As flies of both genotypes aged, cardiac levels of collagen IV (Viking) and Pericardin increased similarly. Over-expression of SPARC caused cardiomyopathy and increased Pericardin deposition. The findings demonstrate that, like humans, the Drosophila heart develops a fibrosis-like phenotype as it ages. Although having no gross impact on collagen accumulation, reduced SPARC expression extended Drosophila lifespan and cardiac health span. It is proposed that cardiac fibrosis in humans may develop due to the activation of conserved mechanisms and that SPARC may mediate cardiac ageing by mechanisms more subtle than gross accumulation of collagen.


Assuntos
Envelhecimento , Insuficiência Cardíaca/etiologia , Miocárdio/patologia , Osteonectina/fisiologia , Animais , Colágeno/metabolismo , Drosophila melanogaster , Fibrose , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA