Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Phytoremediation ; 24(2): 205-214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34126809

RESUMO

The aim of this study was to determine the influence of syringic acid (SA), a plant secondary metabolite (PSM), on the properties of soil contaminated with 2-methyl-4-chlorophenoxyacetic acid (MCPA) and the condition of two cucurbit species zucchini (C. pepo L. 'Atena Polka') and cucumber (C. sativus 'Cezar') grown on that soil. It was found that amendment with MCPA and MCPA + SA modified the soil physico-chemical properties. Content of N and K was significantly higher for variants amended with SA and/or MCPA, while P content was lower in variant amended with SA. The cucurbits demonstrated varied efficiencies in mitigating the phytotoxicity of the MCPA-treated soil. For soil amended with MCPA + SA, samples remediated with cucumber were characterized as slightly toxic or toxic (45.2%-81.5%), while those planted with zucchini were nontoxic or slightly toxic (-40.6%-47.8%). Development of cucumber seedlings was fully inhibited by MCPA, regardless of SA application, zucchini demonstrated enhanced growth in soil treated with MCPA + SA and no statistically significant differences between morphological parameters of MCPA + SA-treated zucchini in comparison to control plants were observed. The obtained findings suggest that the application of SA is a promising way to mitigate the toxic influence of MCPA in the soil, depending on the cultivated plant species. Novelty statement: The study meets the criteria of novelty and innovativeness. Most importantly, the study is focused on: phytotoxicity studies to inform about the limitations of phytotechnology based on PSMs. Additionally, this manuscript provides an interdisciplinary description of the effects of MCPA and naturally occurring PSM- SA on cucurbits and soil parameters. Such studies, which combine the interactions between cucurbits, their secondary metabolite (SA) and their role in mitigation of phytotoxicity in MCPA-contaminated soil, has not been performed before.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Poluentes do Solo , Biodegradação Ambiental , Ácido Gálico/análogos & derivados , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
2.
Bull Environ Contam Toxicol ; 104(2): 200-205, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31781814

RESUMO

Phenoxy acid 2,4-D (2,4-dichlorophenoxy acid) is one of the most commonly-used herbicide in agriculture. Biodegradation of 2,4-D can be stimulated by structurally-related plant secondary metabolites such as ferulic acid (FA). The aim of this study is to: (1) assess the potential of indigenous soil bacteria to degrade 2,4-D in the presence of FA by PCR analysis of functional tfdA genes, (2) to determine the influence of 2,4-D and FA on samples ecotoxicity using Phytotoxkit® and Microtox® biotests. The detection of tfdA genes varied depending on the enrichment of samples with FA. FA suppressed detection of the tfdA genes, 100 µM 2,4-D induced higher detection of studied amplicons, while 500 µM 2,4-D delayed their detection. The ecotoxicity response was specific and differed between plants (PE% Lepidium sativum > Sinapis alba > Sorghum saccharatum) and bacteria (PE% up to 99% for Vibrio fischeri). Our findings confirm that 2,4-D and FA had a toxic influence on the used organisms.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Biodegradação Ambiental , Ácidos Cumáricos/análise , Herbicidas/análise , Poluentes do Solo/análise , Ácido 2,4-Diclorofenoxiacético/metabolismo , Aliivibrio fischeri/metabolismo , Ácidos Cumáricos/metabolismo , DNA Ribossômico/química , Genes Bacterianos , Herbicidas/metabolismo , Lepidium sativum/metabolismo , Extratos Vegetais , Sinapis/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sorghum/metabolismo
3.
Sci Total Environ ; 867: 161312, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603641

RESUMO

MCPA (2-methyl-4-chlorophenoxyacetic acid) contamination is an emerging problem, especially in water reservoirs. The early removal of MCPA residues from soil can prevent its spread to untreated areas. It has been found that the growth of cucurbits and the addition of selected plant secondary metabolites (PSMs) can stimulate MCPA removal from soil. However, the effect of these treatments on soil microbial activity remains poorly studied. Hence, the aim of this research was to evaluate the influence of zucchini (C. pepo cv Atena Polka) and its characteristic PSM: syringic acid (SA) on the functional diversity of soil microorganisms in MCPA-contaminated soil using Biolog® EcoPlates™. It also examines soil physicochemical properties and the growth parameters of zucchini. Microbial activity was enhanced by both zucchini cultivation and SA. All unplanted variants showed significantly lower microbial activity (average well color development, AWCD, ranging from 0.35 to 0.51) than the planted ones (AWCD ranging from 0.77 to 1.16). SA also stimulated microbial activity in the soil: a positive effect was observed from the beginning of the experiment in the unplanted variants, but over a longer time span in the planted variants. SA ameliorated the toxic effect of MCPA on the studied plants, especially in terms of photosynthetic pigment production: the MCPA+SA group demonstrated significantly increased chlorophyll content (401 ± 4.83 µg/g), compared to the MCPA group without SA (338 ± 50.1 µg/g). Our findings demonstrated that zucchini and the amendment of soils with SA, the characteristic PSM of cucurbits, can shape functional diversity in MCPA-contaminated soil. The changes of soil properties caused by the application of both compounds can trigger changes in functional diversity. Hence, both SA and MCPA exert indirect and direct effects on soil microbial activity.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Poluentes do Solo , Ácido 2-Metil-4-clorofenoxiacético/química , Herbicidas/química , Poluentes do Solo/análise , Bactérias/metabolismo , Solo , Verduras/metabolismo , Microbiologia do Solo
4.
Sci Total Environ ; 836: 155561, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35513141

RESUMO

The potential use of growth substrates prepared with an admixture of 10% to 75% Hudson River sediments was evaluated by analysis of changes in microbial activity (measured using Biolog Ecoplates) and molecular markers (presence of degradative tceA1 and bphA genes) as well as potential risks toward humans and the environment (health and environmental risk quotients). The highest microbial activity was found in growth substrate with 25% Hudson River sediments compared to unamended control soil. Significant differences were observed between samples amended with lower (0-10%) and higher (25-75%) proportion of sediment. Microbial activity increased with the proportion of sediment amendment (≥25% sediment); however, this increase in microbial activity was not affected by increasing pollutant concentrations (PCBs, Pb, Cr Ni and Zn) nor decreasing TOC content. The growth substrate amended with Hudson River sediments demonstrated a potential for PCB degradation, as evidenced by the presence of tceA1 and bphA genes responsible, respectively, for reductive dehalogenation and oxidation of a range of aromatic organic compounds including PCBs. An assessment of risk quotients showed that the growth substrates containing lower doses of Hudson River sediments (10-50%) meet the international requirements for use in agriculture/horticulture for the production of non-food crops. Nevertheless, due to the elevated content of some toxic metals and PCBs, the growth substrate prepared with the highest proportion of sediments (75%) was not suitable for agricultural/horticultural use.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos/química , Humanos , Bifenilos Policlorados/análise , Medição de Risco , Rios , Solo , Poluentes Químicos da Água/análise
5.
Front Plant Sci ; 13: 882228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712561

RESUMO

The integration of phytoremediation and biostimulation can improve pollutant removal from the environment. Plant secondary metabolites (PSMs), which are structurally related to xenobiotics, can stimulate the presence of microbial community members, exhibiting specialized functions toward detoxifying, and thus mitigating soil toxicity. In this study, we evaluated the effects of enrichment of 4-chloro-2-methylphenoxyacetic acid (MCPA) contaminated soil (unplanted and zucchini-planted) with syringic acid (SA) on the bacterial community structure in soil, the rhizosphere, and zucchini endosphere. Additionally, we measured the concentration of MCPA in soil and fresh biomass of zucchini. The diversity of bacterial communities differed significantly between the studied compartments (i.e., unplanted soil, rhizospheric soil, and plant endosphere: roots or leaves) and between used treatments (MCPA or/and SA application). The highest diversity indices were observed for unplanted soil and rhizosphere. Although the lowest diversity was observed among leaf endophytes, this community was significantly affected by MCPA or SA: the compounds applied separately favored the growth of Actinobacteria (especially Pseudarthrobacter), while their simultaneous addition promoted the growth of Firmicutes (especially Psychrobacillus). The application of MCPA + SA together lead also to enhanced growth of Pseudomonas, Burkholderia, Sphingomonas, and Pandoraea in the rhizosphere, while SA increased the occurrence of Pseudomonas in leaves. In addition, SA appeared to have a positive influence on the degradative potential of the bacterial communities against MCPA: its addition, followed by zucchini planting, significantly increased the removal of the herbicide (50%) from the soil without affecting, neither positively nor negatively, the plant growth.

6.
Environ Sci Pollut Res Int ; 27(7): 7388-7397, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31884549

RESUMO

The aim of this study was to assess the potential for application of Hudson River sediment as a plant growth medium by mixing with various proportions of soil. The growth medium obtained by the admixture of soil and Hudson River sediment was characterized by optimal pH, reduced salinity, and presence of macro- (K, Mg) and micronutrients (Fe, Mn). Apart from beneficial nutrients and organic matter, the riverine sediment also contained toxic metals (Zn 86 mg; Cu 17.8 mg; Ni 16.6 mg; Cr 20.7 mg; Cd 0.46 mg; Pb 20.7 mg/kg, at concentrations below the threshold effect concentration) and PCBs (total concentration 254 ng/g), which can have a negative impact on soil ecosystems. The results ecological risk assessment of six trace elements and PCBs in sediment suggested medium/moderate risk (PECq = 0.21) and the need for ecotoxicological tests prior to its use as a growth medium. However, ecotoxicity tests of the soil/sediment admixture indicated that it was non-toxic or less-toxic to crustacean Heterocypris incongruens (PE = - 8-38%) and bacteria Aliivibrio fischeri (PE = - 20-38). For Sinapis alba L. and Lepidium sativum L., the germination index (GI) indicated the dominance of inhibitory effect on plant growth; whereas for the Sorghum saccharatum L., the GI value showed the stimulatory effect. Based on the above physicochemical and ecotoxicological analyses, the sediment was found suitable for use as a growth medium, for non-edible plants. It is worth to underline that this sediment was collected from relatively less contaminated location of the river and therefore the results may not represent sediments from entire stretch of the Hudson River.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Metais Pesados/toxicidade , New York , Rios , Solo
7.
Environ Sci Pollut Res Int ; 27(9): 8872-8884, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31686332

RESUMO

The aim of the study was to evaluate the influence of the application of increasing proportions (0%, 10%, 25%, 50%, 75%, and 100%) of an admixture of PCB-contaminated Hudson River sediment collected from the Upper Hudson River, near Waterford, Saratoga county (New York, USA) on soil properties, phytotoxicity, and biometric and physiological responses of cucumber (Cucumis sativus L. cv 'Wisconsin SMR 58') and zucchini (Cucurbita pepo L. cv 'Black Beauty') grown as potential phyto- and rhizoremediators. The experiment was performed for 4 weeks in a growth chamber under controlled conditions. Amendment of Hudson River sediment to soil led to a gradual increase in PCB content of the substratum from 13.7 µg/kg (with 10% sediment) to 255 µg/kg (with 100% sediment). Sediment amendment showed no phytotoxic effects during the initial stages, even Lepidium sativum root growth was stimulated; however, this positive response diminished following a 4-week growth period, with the greatest inhibition observed in unplanted soil and zucchini-planted soil. The stimulatory effect remained high for cucumber treatments. The sediment admixture also increased cucurbit fresh biomass as compared to control samples, especially at lower doses of sediment admixture, even though PCB content of the soil amended with sediment increased. Cucurbits' leaf surface area, in turn, demonstrated an increase for zucchini, however only for 50% and 75% sediment admixture, while cucumber showed no changes when lower doses were applied and decrease for 75% and 100% sediment admixture. Chlorophyll a + b decreased significantly in sediment-amended soils, with greater inhibition observed for cucumber than zucchini. Our results suggest that admixture of riverine sediment from relatively less-contaminated locations may be used as soil amendments under controlled conditions; however, further detailed investigation on the fate of pollutants is required, especially in terms of the bioaccumulation and biomagnification properties of PCBs, before contaminated sediment can be applied in an open environment.


Assuntos
Bifenilos Policlorados/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Clorofila A , New York , Solo , Wisconsin
8.
PeerJ ; 7: e6745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30993052

RESUMO

The ability of microorganisms to degrade xenobiotics can be exploited to develop cost-effective and eco-friendly bioremediation technologies. Microorganisms can degrade almost all organic pollutants, but this process might be very slow in some cases. A promising way to enhance removal of recalcitrant xenobiotics from the environment lies in the interactions between plant exudates such as plant secondary metabolites (PSMs) and microorganisms. Although there is a considerable body of evidence that PSMs can alter the microbial community composition and stimulate the microbial degradation of xenobiotics, their mechanisms of action remain poorly understood. With this in mind, our aim was to demonstrate that similarity between the chemical structures of PSMs and xenobiotics results in higher micropollutant degradation rates, and the occurrence of corresponding bacterial degradative genes. To verify this, the present study analyses the influence of syringic acid, a plant secondary metabolite, on the bacterial degradation of an herbicide, 4-chloro-2-methylphenoxyacetic acid (MCPA). In particular, the presence of appropriate MCPA degradative genes, MCPA removal efficiency and changes in samples phytotoxicity have been analyzed. Significant MCPA depletion was achieved in samples enriched with syringic acid. The results confirmed not only greater MCPA removal from the samples upon spiking with syringic acid, and thus decreased phytotoxicity, but also the presence of a greater number of genes responsible for MCPA biodegradation. 16S rRNA gene sequence analysis revealed ubiquitous enrichment of the ß-proteobacteria Rhodoferax, Achromobacter, Burkholderia and Cupriavidus. The obtained results provide further confirmation that plant metabolites released into the rhizosphere can stimulate biodegradation of xenobiotics, including MCPA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA