Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biomacromolecules ; 21(8): 3447-3458, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32633490

RESUMO

The development of sustainable materials by employing natural and nontoxic resources has been attracting much attention over the previous years. In this work, we discuss for the first time the chemical combination between resorcinol diglycidyl ether (RDGE), an aromatic biobased thermosetting monomer, and polyhydroxybutyrate (PHB), a bioderived and biodegradable thermoplastic polyester. By this combination, we aimed to associate the high thermal stability of RDGE with a toughening effect by the aliphatic chains of PHB. The investigations on the mechanism of the cross-linking reaction and on the structural connectivity between the two components were realized by Fourier transform infrared (FTIR) and NMR spectroscopies. We found that the epoxide polymerization catalyzed by tertiary amines triggers the formation of crotonyl species by polyhydroxybutyrate cleavage. Two-dimensional NMR experiments show that polyhydroxybutyrate fragments covalently bind as side chains to the rigid aromatic network of the epoxide frame. The cross-linking between the two systems entails the formation of new ester and ether bonds. The obtained structures show a network homogeneity confirmed by a single Tg, from 85 to 47 °C, as a function of the formulation, and tan δ values from 87 to 53 °C. The combination of the two comonomers showed a positive effect. The PHB increased the toughness of RDGE-based thermosets, improving the material elasticity by increasing the chain length between the cross-links. An important result of this study is the high thermal stability of RDGE/PHB bioresins, with the T5% varying between 330 and 310 °C as a function of the PHB ratio.


Assuntos
Poliésteres , Resorcinóis , Compostos de Epóxi , Hidroxibutiratos , Polimerização
2.
Biomacromolecules ; 21(2): 517-533, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31675230

RESUMO

The need for thermosets from renewable resources is continuously increasing to find eco-friendly alternatives to petroleum-derived materials. Products obtained from biomass have shown to play an important role in this challenge. Here, we present the structural characterization of new biobased thermosets made of humins, a byproduct of lignocellulosic biorefinery, and glycidylated phloroglucinol coming from the biomass phenolic fraction. By employing attenuated total reflection-Fourier transform infrared and NMR spectroscopies, we elucidated the connections between these two systems, contributing to clarify their molecular structures and their reactivities. We demonstrated that the resin curing takes place through ether bond formation between humin hydroxyl functions and phloroglucinol epoxides. Besides cross-linking, humins show a complex rearrangement of their furanic structure through different concomitant chemical pathways depending on the reaction conditions.


Assuntos
Compostos de Epóxi/química , Éteres/química , Substâncias Húmicas , Floroglucinol/química , Benzilaminas , Varredura Diferencial de Calorimetria , Reagentes de Ligações Cruzadas/química , Lignina/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Resíduos
3.
Biomacromolecules ; 21(9): 3923-3935, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32790997

RESUMO

This work reports for the first time the copolymerization studies of 11 newly synthesized epoxidized vegetable oils (EVOs) that reacted with a disulfide-based aromatic dicarboxylic acid (DCA) to produce thermoset materials with recyclability properties. These new EVOs' reactivity and properties were compared with those of the two commercial references: epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO). The structure-reactivity correlation is proposed by differential scanning calorimetry (DSC) analysis, corroborating the epoxy content of EVO monomers, the initiator effect, the copolymerization reaction enthalpy, and the temperature range. The thermomechanical properties of the obtained thermosets were evaluated and discussed in correlation with the structure and reactivity of monomers by dynamic mechanical analysis (DMA), tensile testing, and thermogravimetric analysis (TGA). It has been found that the higher the EVO functionality, the higher is the reactivity, cross-linking density, and final performances, with tan δ values ranging from 34 to 111 °C. This study investigates the chemical recycling and the solvent resistance of these vitrimer-like materials that have a high bio-based carbon content, from 58 to 79%, with potential application in coating or composite materials in the automotive sector.


Assuntos
Óleo de Semente do Linho , Óleos de Plantas , Polimerização , Temperatura , Resistência à Tração
4.
Biomacromolecules ; 20(10): 3831-3841, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412201

RESUMO

The last two decades have witnessed a significant growth in using bioderived materials, driven by the necessity of replacing fossil-derived precursors, reducing the fossil fuel consumption, and lowering the global environmental impact. This is possible thanks to the availability of abundant resources from biomasses and the development of optimized technologies based on the principles of sustainability and circular economy. Herein, we report on the synthesis and characterization of new carbohydrate-derived epoxy resins. In particular, 2,5-bis[(oxiran-2-ylmethoxy)methyl]furan has been synthesized and cured with methyl nadic anhydride. The effect of different initiators was studied, in order to identify the most efficient curable formulations. A series of resins was then prepared varying the epoxide-anhydride ratios. The results gathered from physicochemical, mechanical, morphological analyses have demonstrated that the produced furan-based thermosets have the potential to be proposed as sustainable alternatives to the traditional, bisphenol A-containing epoxy resins.


Assuntos
Anidridos/química , Compostos de Epóxi/química , Resinas Epóxi/química , Furanos/química , Compostos Benzidrílicos/química , Fenóis/química
5.
Molecules ; 24(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739442

RESUMO

The combination of eco-respectful epoxy compounds with the humins, a by-product of biomass chemical conversion technologies, allow the obtention of materials with high added value. In this work, we propose a chemical connection study of humins with two aliphatic bis-epoxides through copolymerization reactions to synthesize sustainable, bio-based thermosets. The mechanism insights for the crosslinking between the epoxides and humins was proposed considering the different functionalities of the humins structure. Fourier Transform InfraRed (FT-IR), one dimensional (1D) and two-dimensional (2D) Nuclear Magnetic Resonance (NMR) spectroscopy techniques were used to build the proposed mechanism. By these techniques, the principal chain connections and the reactivity of all the components were highlighted in the synthesized networks.


Assuntos
Química Verde/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Biomassa , Substâncias Húmicas
6.
Soft Matter ; 13(10): 1956-1965, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28170018

RESUMO

The epoxy/anhydride copolymerization kinetics of an original star-epoxy monomer (TriaEP) was explored in dynamic heating mode using a series of isoconversional methods. Negative values of the apparent activation energy (Eα) related to an anti-Arrhenius behavior were observed. The transition from Arrhenius to anti-Arrhenius behavior and vice versa depending on the Eα of polymerization was correlated with the dynamics of mesophasic fall-in/fall-out events, physically induced transition (PIT) and chemically induced transition (CIT). This self-assembly phenomenon induces the generation of an anisotropic crosslinked architecture exhibiting both nematic discotic (ND) and nematic columnar (NC) organization. Particular emphasis was placed on evaluating the juxtaposition/contribution of the liquid-crystalline transitions to crosslinking, considering both the reaction dynamics and the macromolecular vision.

7.
Nanomaterials (Basel) ; 14(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251161

RESUMO

Characterization of zein aqueous solutions, as a function of the ethanol content and pH, was performed, giving information on the zein aggregation state for the construction of complexes. The aggregation state and surface charge of zein was found to depend on the mixed solvent composition and pH. Nonstoichiometric complex nanoparticles (NPECs) were prepared by electrostatically self-assembling zein, as the polycation, and sodium alginate or chondroitin sulfate, as the polyanions, at a pH of 4. A wide range of parameters were investigated: the alcohol-water content in the zein solutions, the charge molar ratios, the solution addition order and the addition rate. The resulting nanoparticles were characterized by dynamic and electrophoretic light scattering, circular dichroism and scanning electron microscopy. The smallest size for the NPECs (100 nm) was obtained when the polysaccharides acted as the titrate with an addition rate of 0.03 mL·min-1. The NPECs with the best characteristics were selected for loading with ciprofloxacin and then deposited on a cellulosic material in order to evaluate their antibacterial activity. Substantial drug encapsulation with desired drug release profiles were found together with notable antibacterial efficiency, showing the tunability of the properties for both the zein and its complexes with polysaccharides, together with their application potential in the biomedical field.

8.
Materials (Basel) ; 16(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770288

RESUMO

The present manuscript describes the use of natural fibers as natural and sustainable reinforcement agents for advanced bio-based composite materials for strategic sectors, for example, the construction sector. The characterization carried out shows the potential of both natural hemp and linseed fibers, as well as their composites, which can be used as insulation materials because their thermal conductivity properties can be compared with those observed in typical construction materials such as pine wood. Nevertheless, linseed composites show better mechanical performance and hemp has higher fire resistance. It has been demonstrated that these natural fibers share similar properties; on the other hand, each of them should be used for a specific purpose. The work also evaluates the use of bio matrixes in composites, demonstrating their feasibility and how they impact the final material's properties. The proposed bio-resin enhances fire resistance and decreases the water absorption capacity of the natural fibers, enabling the use of composites as a final product in the construction sector. Therefore, it has been demonstrated that it is possible to manufacture a biocomposite with non-woven natural fibers. In fact, for properties such as thermal conductivity, it is capable of competing with current materials. Proving that biomaterials are a suitable solution for developing sustainable products, fulfilling the requirements of the end-user applications, as it has been demonstrated in this research with the non-woven fibers for the non-structural components.

9.
Polymers (Basel) ; 15(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139881

RESUMO

The non-toxic and biodegradable nature of chitosan makes it a valuable resource offering promising opportunities in the development of bio-based materials with enhanced mechanical and thermal properties. In this work, the combination of epoxidized linseed oil, oxalic or citric acids, and chitosan (CHI) as a curing accelerator presents an attractive strategy to create bio-based and sustainable thermosetting materials. This article aims to provide a comprehensive exploration of the systems reactivities, characteristics, and performance evaluation of the designed bio-thermosets. Both the nature of the two carboxylic acids and the presence of chitosan are shown to have a big impact on the thermomechanical properties of the developed networks. While oxalic acid favours the formation of elastic networks, with low Tg values (increasing with CHI content between 0.7 and 8.5 °C) and relatively low Young's modulus (~2.5 MPa), citric acid promotes the formation of very dense networks with lower mass of the segments between the crosslinks, having 20 times higher Tg values (from 36 to 45 °C) and ~161 times higher Young's modulus (from 94 MPa up to 404 MPa in these systems). The CHI has a strong impact on the curing reaction and on the overall properties, by increasing the materials' performance.

10.
Int J Biol Macromol ; 223(Pt A): 263-272, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36343834

RESUMO

Chitosan is a valuable biopolymer with a great potential to be used in the design of sustainable materials. Its use typically requires converting the solid powder into a quite dilute solution by disrupting the hydrogen bonding between primary amine and hydroxyl groups. In this work we show that chitosan can be reacted with a tris-aromatic tris-epoxy monomer, generating thermoset materials. The design of the new structures adopted a strategy where the chitosan was mixed in its solid form, to avoid the use of solvents and additional processing steps. A combined polymerization mechanism was proposed, including growth chain polymerization and polyaddition. The obtained materials containing different epoxy/chitosan weight percentage ratios show outstanding properties: high glass transition ~230 °C, high Young's modulus ~2116 and 1716 MPa, tensile strength of ~35 MPa and T5% ~ 300 °C.


Assuntos
Quitosana , Quitosana/química , Resistência à Tração , Módulo de Elasticidade , Resinas Epóxi , Polimerização
11.
Polymers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559840

RESUMO

There is an imperative need to find sustainable ways to produce bisphenol A free, high performance thermosets for specific applications such as the space or aerospace areas. In this study, an aromatic tris epoxide, the tris(4-hydroxyphenyl)methane triglycidyl ether (THPMTGE), was selected to generate high crosslinked networks by its copolymerization with anhydrides. Indeed, the prepared thermosets show a gel content (GC) ~99.9% and glass transition values ranged between 167-196 °C. The thermo-mechanical properties examined by DMA analyses reveal the development of very hard materials with E' ~3-3.5 GPa. The thermosets' rigidity was confirmed by Young's moduli values which ranged between 1.25-1.31 GPa, an elongation at break of about 4-5%, and a tensile stress of ~35-45 MPa. The TGA analyses highlight a very good thermal stability, superior to 340 °C. The Limit Oxygen Index (LOI) parameter was also evaluated, showing the development of new materials with good flame retardancy properties.

12.
Chempluschem ; 87(7): e202200067, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35502866

RESUMO

Humins have already shown their potential as thermosetting resins to produce crosslinked networks and composites, with a large variety of properties depending on the used macromolecular approach. Our group has shown that a very interesting class of materials with tunable flexibility can be made by humins co-polymerization with glycerol diglycidyl ether (GDE). To create a clearer picture on structure-reactivity-properties-application interdependent relationship, a principal component analysis (PCA) was applied on several humins batches. The PCA allowed to obtain a clear discrimination between the humins/GDE resins samples in 3 groups which correlate very well with the results of copolymerization reactivity (DSC) and thermosets properties: crosslink density, thermal stability, tan δ, Shore D hardness values, etc.


Assuntos
Análise de Componente Principal , Polimerização
13.
Chempluschem ; 87(8): e202200190, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35957544

RESUMO

(R)-Limonene, a renewable terpene, and its epoxidized derivatives, i. e. limonene epoxides, have prompted growing attention over the last decade as building blocks for the synthesis of biobased monomers and polymers. With the goal of replacing petroleum-based polymers several polymerization techniques have been applied on limonene oxide and limonene dioxide monomers. This paper aims to contribute to the literature by presenting a review dedicated to limonene oxide and dioxide as raw monomers of renewable origin for the development of biobased polymers. The polymerization techniques described are namely the homopolymerization, the copolymerization with carbon dioxide and anhydrides, and the copolymerization of limonene epoxide-based monomers. Limonene oxide polymerizations will be investigated first, followed by limonene dioxide polymerizations.


Assuntos
Compostos de Epóxi , Polímeros , Dióxido de Carbono , Limoneno , Polimerização
14.
Polymers (Basel) ; 13(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670357

RESUMO

The design of polymers from renewable resources with recycling potential comes from economic and environmental problems. This work focused on the impact of disulphide bonds in the dicarboxylic acids reactions with three epoxidized vegetable oils (EVOs). For the first time, the comparison between aromatic vs. aliphatic dicarboxylic acids, containing or not S-S bonds with EVOs was discussed and evaluated by dynamic scanning calorimetry. The obtained thermosets showed reprocessability, by the dual dynamic exchange mechanism. The virgin and reprocessed materials were characterized and the thermomechanical properties were compared. The thermosets derived from EVOs with high epoxy content combined with aromatic diacids containing disulphide bridges showed high glass transition values (~111 °C), high crosslink densities and good solvent stability.

15.
Polymers (Basel) ; 13(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34372107

RESUMO

In an attempt to prepare sustainable epoxy thermosets, this study introduces for the first time the idea to use antagonist structures (aromatic/aliphatic) or functionalities (acid/amine) as hardeners to produce reprocessable resins based on epoxidized camelina oil (ECMO). Two kinds of mixtures were tested: one combines aromatic/aliphatic dicarboxylic acids: 2,2'-dithiodibenzoic acid (DTBA) and 3,3'-dithiodipropionic acid (DTDA); another is the combination of two aromatic structures with acid/amine functionality: DTBA and 4-aminophenyl disulfide (4-AFD). DSC and FT-IR analyses were used as methods to analyze the curing reaction of ECMO with the hardeners. It was found that the thermosets obtained with the dual crosslinked mechanism needed reduced curing temperatures and reprocessing protocols compared to the individual crosslinked thermosets. Thanks to the contribution of disulfide bonds in the network topology, the obtained thermosets showed recycling ability. The final thermomechanical properties of the virgin and mechanical reprocessed materials were analyzed by DMA and TGA. The obtained thermosets range from elastomeric to rigid materials. As an example, the ECMO/DTBA704-AFD30 virgin or reprocessed thermosets have tan δ values reaching 82-83 °C. The study also investigates the chemical recycling and the solvent resistance of these vitrimer-like materials.

16.
Polymers (Basel) ; 13(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445728

RESUMO

Thiswork is focused on the development of sustainable biocomposites based on epoxy bioresin reinforced with a natural porous material (hydrochar, HC) that is the product of spruce bark wastes subjected to hydrothermal decomposition. To identify the influence of hydrochar as a reinforcing material on the designed composites, seven formulations were prepared and tested. An aromatic epoxy monomer derived from wood biomass was used to generate the polymeric matrix, and the formulations were prepared varying the filler concentration from 0 to 30 wt %. The reactivity of these formulations, together with the structural, thermal, and mechanical properties of bio-based resin and biocomposites, are investigated. Surprisingly, the reactivity study performed by differential scanning calorimetry (DSC) revealed that HC has a strong impact on polymerization, leading to an important increase in reaction enthalpy and to a decrease of temperature range. The Fourier Transform Infrared Spectroscopy (FT-IR) investigations confirmed the chemical bonding between the resin and the HC, while the dynamic mechanical analysis (DMA) showed increased values of crosslink density and of storage moduli in the biocomposites products compared to the neat bioresin. Thermogravimetric analysis (TGA) points out that the addition of hydrochar led to an improvement of the thermal stability of the biocomposites compared with the neat resorcinol diglycidyl ether (RDGE)-based resin (T5% = 337 °C) by ≈2-7 °C. Significantly, the biocomposites with 15-20 wt % hydrochar showed a higher stiffness value compared to neat epoxy resin, 92SD vs. 82SD, respectively.

17.
Polymers (Basel) ; 12(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708731

RESUMO

Bio-based thermosetting resins were synthesized from a ternary composition: humins; epoxidized linseed oil (ELO); and an industrial hardener, Capcure3-800 (CAP). Humins are in a focused attention in the last years, as biorefinery by-product, therefore its valorization through materials design is very important. Here we present a structural study of terpolymerization of humins/ ELO/CAP. The reactivity of these systems was highlighted by in situ FT-IR and 1H and 13C NMR. The integration of humins in thermosetting resins gives alternatives to new feedstocks for future bio-based materials.

18.
ACS Appl Bio Mater ; 3(11): 8094-8104, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019549

RESUMO

The preparation of thermosets based on epoxidized vegetable oils (EVOs) involved a peculiar attention in recent years; however, most of them cannot be recycled once cross-linked. In the present work, epoxy thermosetting resins like-vitrimers with dynamic disulfide covalent bonds were prepared by copolymerizing twelve EVOs with 2,2'-dithiodibenzoic acid, as hardener. Here, we show for the first time the reprocessability, repairability, and recyclability properties of EVOs thermosets. The 3R abilities were evaluated in correlation with the EVO epoxy contents, which influence the final thermo-mechanical properties of the recycled material. The virgin versus recycled materials' comparison was studied by FT-IR, DSC, TGA, and DMA, also comparing their swelling ability and high gel content. The study investigates, in addition, the excellent shape memory properties of the reprocessed EVOs/disulfide materials.

19.
RSC Adv ; 10(68): 41954-41966, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35516529

RESUMO

Beyond the need to find a non-toxic alternative to DiGlycidyl Ether of Bisphenol-A (DGEBA), the serious subject of non-epichlorohydrin epoxy resins production remains a crucial challenge that must be solved for the next epoxy resin generations. In this context, this study focuses on the valorization of vegetable oils (VOs) into thermoset materials by using (i) epoxidation of the VOs through the "double bonds to epoxy" synthetic route and (ii) synthesis of crosslinked homopolymers by UV or hardener-free thermal curing processes. A thorough identification, selection and physico-chemical characterization of non-edible or non-valuated natural vegetable oils were performed. Selected VOs, characterized by a large range of double bond contents, were then chemically modified into epoxides thanks to an optimized, robust and sustainable method based on the use of acetic acid, hydrogen peroxide and Amberlite® IR-120 at 55 °C in toluene or cyclopentyl methyl ether (CMPE) as a non-hazardous and green alternative solvent. The developed environmentally friendly epoxidation process allows reaching almost complete double bond conversion with an epoxy selectivity above 94% for the 12 studied VOs. Finally, obtained epoxidized vegetable oils (EVOs), characterized by an epoxy index from 2.77 to 6.77 meq. g-1 were cured using either UV or hardener-free thermal curing. Both methods enable the synthesis of 100% biobased EVO thermoset materials whose thermomechanical performances were proved to linearly increase with the EVOs' epoxy content. This paper highlights that tunable thermomechanical performances (T α from -19 to 50 °C and T g from -34 to 36 °C) of EVO based thermoset materials can be reached by well selecting the starting VO raw materials.

20.
ACS Appl Bio Mater ; 3(11): 7550-7561, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019496

RESUMO

The end-of-life of thermoset materials is a real issue that confronts our society, and the strategy of introducing dynamic reversible bonds can be a sustainable solution to overcome this problem. This study shows an efficient way to produce biobased and recyclable thermosets, for a circular use. To reduce the production costs linked to energy and duration, an improved curing process is proposed by combining aromatic and aliphatic diacid hardeners containing dynamic S-S bonds. The work demonstrates the increased reactivity of epoxidized vegetable oil reacted with the two diacids. The structural evolutions during the exchange reactions that allow the recyclability were followed by Fourier transformed-infrared and nuclear magnetic resonance spectroscopies, high-performance liquid chromatography, and mass spectroscopy. The curing process was studied by differential scanning calorimetry and kinetic study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA