Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biomacromolecules ; 22(2): 594-611, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33448795

RESUMO

Strategies involving the inclusion of cell-instructive chemical and topographical cues to smart biomaterials in combination with a suitable physical stimulus may be beneficial to enhance nerve-regeneration rate. In this regard, we investigated the surface functionalization of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)-based electroconductive electrospun nanofibers coupled with externally applied electrical stimulus for accelerated neuronal growth potential. In addition, the voltage-dependent conductive mechanism of the nanofibers was studied in depth to interlink intrinsic conductive properties with electrically stimulated neuronal expressions. Surface functionalization was accomplished using 3-aminopropyltriethoxysilane (APTES) and 1,6-hexanediamine (HDA) as an alternative to costly biomolecule coating (e.g., collagen) for cell adhesion. The nanofibers were uniform, porous, electrically conductive, mechanically strong, and stable under physiological conditions. Surface amination boosted biocompatibility, 3T3 cell adhesion, and spreading, while the neuronal model rat PC12 cell line showed better differentiation on surface-functionalized mats compared to nonfunctionalized mats. When coupled with electrical stimulation (ES), these mats showed comparable or faster neurite formation and elongation than the collagen-coated mats with no-ES conditions. The findings indicate that surface amination in combination with ES may provide an improved strategy to faster nerve regeneration using MEH-PPV-based neural scaffolds.


Assuntos
Nanofibras , Animais , Neurônios , Células PC12 , Ratos , Engenharia Tecidual , Alicerces Teciduais
2.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946690

RESUMO

The effectiveness of an amphoteric cryogel (AAC) as an oral sorbent (enerosorbent) for the treatment of acute poisoning of small animals (rats) with heavy metals (HMs) was studied in in vivo experiments. The morphological structure of the cryogel was examined using scanning electron microscopy/energy-dispersive X-ray analysis and confocal microscopy. The use of the cryogel in the treatment of rats administered an LD50 dose of Cd(NO3)2, CsNO3, Sr(NO3)2, or HgCl2 in aqueous solution showed their high survival rate compared to the control group, which did not receive such treatment. The histological and chemical analysis of internal tissues and the biochemical analysis of the blood of the experimental animals showed the effectiveness of the cryogel in protecting the animals against the damaging effect of HMs on the organism comparable with unithiol, a chelating agent based on 2,3-dimercapto-1-propane sulfonic acid sodium salt (DMPS) approved for the treatment of acute poisoning with some heavy metals.


Assuntos
Antídotos , Quelantes , Criogéis , Intoxicação por Metais Pesados/tratamento farmacológico , Animais , Antídotos/síntese química , Antídotos/química , Antídotos/farmacologia , Quelantes/síntese química , Quelantes/química , Quelantes/farmacologia , Criogéis/síntese química , Criogéis/química , Criogéis/farmacologia , Intoxicação por Metais Pesados/metabolismo , Masculino , Metais Pesados/metabolismo , Ratos
3.
J Environ Manage ; 182: 141-148, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472050

RESUMO

Effective technologies are required to remove organic micropollutants from large fluid volumes to overcome present and future challenges in water and effluent treatment. A novel hierarchical composite filter material for rapid and effective removal of polar organic contaminants from water was developed. The composite is fabricated from phenolic resin-derived carbon microbeads with controllable porous structure and specific surface area embedded in a monolithic, flow permeable, poly(vinyl alcohol) cryogel. The bead-embedded monolithic composite filter retains the bulk of the high adsorptive capacity of the carbon microbeads while improving pore diffusion rates of organic pollutants. Water spiked with organic contaminants, both at environmentally relevant concentrations and at high levels of contamination, was used to determine the purification limits of the filter. Flow through tests using water spiked with the pesticides atrazine (32 mg/L) and malathion (16 mg/L) indicated maximum adsorptive capacities of 641 and 591 mg pollutant/g carbon, respectively. Over 400 bed volumes of water contaminated with 32 mg atrazine/L, and over 27,400 bed volumes of water contaminated with 2 µg atrazine/L, were treated before pesticide guideline values of 0.1 µg/L were exceeded. High adsorptive capacity was maintained when using water with high total organic carbon (TOC) levels and high salinity. The toxicity of water filtrates was tested in vitro with human epithelial cells with no evidence of cytotoxicity after initial washing.


Assuntos
Compostos Orgânicos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Carbono/química , Criogéis/química , Filtração/instrumentação , Filtração/normas , Humanos
4.
J Mater Sci Mater Med ; 25(6): 1589-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24573455

RESUMO

Adsorbents designed with porosity which allows the removal of protein bound and high molecular weight uraemic toxins may improve the effectiveness of haemodialysis treatment of chronic kidney disease (CKD). A nanoporous activated carbon monolith prototype designed for direct blood contact was first assessed for its capacity to remove albumin bound marker toxins indoxyl sulphate (IS), p-cresyl sulphate (p-CS) and high molecular weight cytokine interleukin-6 in spiked healthy donor studies. Haemodialysis patient blood samples were then used to measure the presence of these markers in pre- and post-dialysis blood and their removal by adsorbent recirculation of post-dialysis blood samples. Nanopores (20-100 nm) were necessary for marker uraemic toxin removal during in vitro studies. Limited removal of IS and p-CS occurred during haemodialysis, whereas almost complete removal occurred following perfusion through the carbon monoliths suggesting a key role for such adsorbent therapies in CKD patient care.


Assuntos
Carvão Vegetal/química , Cresóis/isolamento & purificação , Hemofiltração/instrumentação , Indicã/isolamento & purificação , Interleucina-6/isolamento & purificação , Diálise Renal/instrumentação , Ésteres do Ácido Sulfúrico/isolamento & purificação , Uremia/sangue , Absorção , Cresóis/sangue , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Indicã/sangue , Interleucina-6/sangue , Teste de Materiais , Membranas Artificiais , Projetos Piloto , Ésteres do Ácido Sulfúrico/sangue , Uremia/prevenção & controle
5.
Chemphyschem ; 14(18): 4126-33, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24255011

RESUMO

The adsorption of ionic mercury(II) from aqueous solution on functionalized hydride silicon materials was investigated. The adsorbents were prepared by modification of mesoporous silica C-120 with triethoxysilane or by converting alkoxysilane into siloxanes by reaction with acetic acid. Mercury adsorption isotherms at 208C are reported, and maximum mercury loadings were determined by Langmuir fitting. Adsorbents exhibited efficient and rapid removal of ionic mercury from aqueous solution, with a maximum mercury loading of approximately 0.22 and 0.43 mmol of Hg g1 of silica C-120 and polyhedraloligomeric silsesquioxane (POSS) xerogel, respectively. Adsorption efficiency remained almost constant from pH 2.7 to 7. These inexpensive adsorbents exhibiting rapid assembly, low pH sensitivity, and high reactivity and capacity, are potential candidates as effective materials for mercury decontamination in natural waters and industrial effluents.

6.
Phys Chem Chem Phys ; 14(47): 16267-78, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23132464

RESUMO

Adsorption of myoglobin (Mb), bovine serum albumin (BSA) and γ-globulin (GG) onto activated carbons (ACs) with different pore size distributions, and poly(vinyl alcohol) (PVA) monolithic cryogels containing AC particles was studied. The highest initial rate of Mb adsorption was observed for AC having the largest specific surface area (1939 m(2) g(-1)) and pore volume (1.82 cm(3) g(-1)). The adsorption kinetics of proteins was characterized by a bimodal shape of the distribution f(D) function of an effective diffusion coefficient. Adsorption isotherms of Mb and GG were of Freundlich type within the studied range of equilibrium concentrations (10-150 µg mL(-1)). The distributions of free energy of protein adsorption were bimodal and reflected both interactions with carbon surfaces and self-association of proteins. Adsorbed amounts of Mb were the highest among the proteins studied (up to 700 mg g(-1) carbon), which was attributed to the higher fraction of pores accessible for Mb. Incorporation of carbon particles into PVA-based cryogel resulted in macroporous monolithic composite materials (AC-PVA) exhibiting good flow-through properties. Scanning electron microscopy of the composites showed macroporous aggregates of carbon particles held together by films and bridges of PVA. The rates of adsorption and adsorbed amounts of proteins on AC-PVA were reduced compared to the pristine carbon and depended on the carbon content in the composites. Nevertheless, adsorption of Mb on AC-PVA took place even in the presence of 500-fold higher concentration of BSA. This indicated a possibility of Mb clearance from blood plasma using the PVA-carbon monoliths.


Assuntos
Carvão Vegetal/química , Criogéis/química , Mioglobina/isolamento & purificação , Álcool de Polivinil/química , Soroalbumina Bovina/isolamento & purificação , gama-Globulinas/isolamento & purificação , Adsorção , Animais , Bovinos , Cavalos , Porosidade
7.
Angew Chem Int Ed Engl ; 51(11): 2632-5, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22307977

RESUMO

Breaking through the stoichiometry barrier: as the diameter of silver particles is decreased below a critical size of 32 nm, the molar ratio of aqueous Hg(II) to Ag(0) drastically increases beyond the conventional Hg/Ag ratio of 0.5:1, leading to hyperstoichiometry with a maximum ratio of 1.125:1. Therein, around 99% of the initial silver is retained to rapidly form a solid amalgam with reduced mercury.

8.
Biomacromolecules ; 12(10): 3733-40, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21842874

RESUMO

In the course of severe pathological conditions, such as acute liver failure and sepsis, toxic metabolites and mediators of inflammation are released into the patient's circulation. One option for the supportive treatment of these conditions is plasmapheresis, in which plasma, after being separated from the cellular components of the blood, is cleansed by adsorption of harmful molecules on polymers or activated carbon. In this work, the adsorption characteristics of activated carbon beads with levels of activation ranging from 0 to 86% were assessed for both hydrophobic compounds accumulating in liver failure (bilirubin, cholic acid, phenol and tryptophan) and cytokines (tumor necrosis factor α and interleukin-6). Progressive activation resulted in significant gradual reduction of both bulk density and mean particle size, in an increase in the specific surface area, and to changes in pore size distribution with progressive broadening of micropores. These structural changes went hand in hand with enhanced adsorption of small adsorbates, such as IL-6 and cholic acid and, to a lesser extent, also of large molecules, such as TNF-α.


Assuntos
Inflamação/terapia , Falência Hepática Aguda/terapia , Plasmaferese/métodos , Adsorção , Bilirrubina/sangue , Carbono/química , Colatos/sangue , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/fisiopatologia , Interleucina-6/sangue , Falência Hepática Aguda/sangue , Falência Hepática Aguda/complicações , Falência Hepática Aguda/fisiopatologia , Tamanho da Partícula , Fenol/sangue , Porosidade , Triptofano/sangue , Fator de Necrose Tumoral alfa/sangue
9.
Phys Chem Chem Phys ; 13(10): 4476-85, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21258685

RESUMO

Quasi-elastic light scattering (QELS) and quartz crystal microbalance (QCM) non-equilibrium and equilibrium studies of competitive interactions of pairs of polymers and proteins with fumed silica and ceramic coatings deposited on QCM crystals show complex interfacial behaviour. The effects observed depend on the adsorption sequence of co-adsorbates, their chemical structure and the morphology and chemical structure of the adsorbent. The equilibrium adsorption and dynamics of interactions of macromolecules with bare adsorbent surface and surface covered with pre-adsorbed polymer or protein, are compared in terms of the distribution functions of the Gibbs free energy of adsorption, which varied from -25 kJ mol(-1) on a bare surface to almost 0 kJ mol(-1) on a polymer or protein coated surface.


Assuntos
Proteínas/química , Adsorção , Animais , Bovinos , Humanos , Cinética , Luz , Modelos Moleculares , Nanoestruturas/química , Polímeros/química , Conformação Proteica , Espalhamento de Radiação , Dióxido de Silício/química , Propriedades de Superfície
10.
Nanotechnology ; 21(7): 75707, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20081295

RESUMO

A facile and rapid assembly of powdered carbon nanotubes (CNTs) into compressible, porous, macroscale monoliths is reported. Despite a Poisson's ratio just above zero, we found that the sample under compression inside a scanning electron microscope (SEM) revealed CNT regions behaving in auxetic and vortex-like rotational modes as well as standard collapse responses. This method is crucial in understanding the macroscale behaviour based on the accumulation of nanoscale responses to an applied force.

11.
J Hazard Mater ; 381: 120996, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31445473

RESUMO

Novel macroporous iron oxide nanocomposite cryogels were synthesized and assessed as arsenite (As(III)) adsorbents. The two-step synthesis method, by which a porous nanonetwork of iron oxide is firstly formed, allowed a homogeneous dispersion of the iron oxide in the cryogel reaction mixture, regardless of the nature of the co-polymer forming the cryogel structure. The cryogels showed excellent mechanical properties, especially the acrylamide-based cryogel. This gel showed the highest As(III) adsorption capacity, with the maximum value estimated at 118 mg/g using the Langmuir model. The immobilization of the nanostructured iron oxide gel into the cryogel matrix resulted in slower adsorption kinetics, however the cryogels offer the advantage of a stable three-dimensional structure that impedes the release of the iron oxide nanoparticles into the treated effluent. A preliminary toxicity evaluation of the cryogels did not indicate any apparent inhibition of human hepatic cells activity, which together with their mechanical stability and high adsorption capacity for As(III) make them excellent materials for the development of nanoparticle based adsorption devices for drinking water treatment.


Assuntos
Arsênio/química , Criogéis/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Sobrevivência Celular/efeitos dos fármacos , Criogéis/toxicidade , Compostos Férricos/toxicidade , Células Hep G2 , Humanos
12.
Sci Rep ; 9(1): 5629, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948767

RESUMO

Oral intestinal adsorbents (enterosorbents) are orally administered materials which pass through the gut where they bind (adsorb) various substances. The enterosorbent Enterosgel (Polymethylsiloxane polyhdrate) is recommended as a symptomatic treatment for acute diarrhoea and chronic diarrhoea associated with irritable bowel syndrome (IBS). Since 1980's there have been many Enterosgel clinical trials, however, the detailed mechanism of Enterosgel action towards specific toxins and interaction with concomitantly administered medications has not been fully investigated. Our in vitro study assessed the adsorption capacity of Enterosgel for bacterial enterotoxins and endotoxin, bile acids and interaction with the pharmaceutical drugs; Cetirizine and Amitriptyline hydrochloride. Our data demonstrate the good adsorption capacity of Enterosgel for bacterial toxins associated with gastrointestinal infection, with a lower than the comparator charcoal Charcodote capacity for bile acids whose levels can be raised in IBS patients. Adsorption capacity for the two drugs varied but was significantly lower than Charcodote. These findings suggest that the mechanism of Enterosgel action in the treatment of gastrointestinal infection or IBS is adsorption of target molecules followed by removal from the body. This therapy offers a drug free approach to prevention and treatment of infectious and chronic non-infectious diseases, where intestinal flora and endotoxemia play a role.


Assuntos
Enteroadsorção/métodos , Silicones/química , Silicones/farmacologia , Adsorção , Amitriptilina/metabolismo , Toxinas Bacterianas/metabolismo , Ácidos e Sais Biliares/metabolismo , Cetirizina/metabolismo , Carvão Vegetal , Diarreia/tratamento farmacológico , Gastroenteropatias/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Síndrome do Intestino Irritável/tratamento farmacológico
13.
Biomaterials ; 29(11): 1638-44, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18207234

RESUMO

A prototype in-line filtration/adsorption device has been developed using novel synthetic pyrolysed carbon monoliths with controlled mesoporous domains of 2-50nm. Porosity was characterized by SEM and porosimetry. Removal of inflammatory cytokines TNF, IL-6, IL-1beta and IL-8 was assessed by filtering cytokine spiked human plasma through the walls of the carbon modules under pressure. The effect of carbon filtration on plasma clotting response and total plasma protein concentration was also assessed. Significant removal of the cytokines IL-6, IL-1beta and IL-8 was observed. Initially marked TNF removal diminished over time. The coagulation studies indicated that the carbon device does not exacerbate the propensity of blood plasma to clot. The total plasma protein concentration remained constant. The device offers a broader approach to the treatment of systemic inflammatory response syndrome (SIRS) by the removal of inflammatory mediators central to its progression.


Assuntos
Tecnologia Biomédica/instrumentação , Tecnologia Biomédica/métodos , Carbono/química , Citocinas/isolamento & purificação , Adsorção , Proteínas Sanguíneas/metabolismo , Citocinas/sangue , Humanos , Inflamação/sangue , Microscopia Eletrônica de Varredura
14.
Acta Biomater ; 4(3): 686-96, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18082477

RESUMO

Degradation of a commercially available collagen-glycosaminoglycan dermal equivalent matrix was studied using electrochemical techniques. Degradation was accelerated by exposure to gamma radiation followed by storage at elevated temperatures or exposure to enzymes. The time-dependent diffusion of a small, electrochemically active, molecular probe, potassium ferrocyanide, through the matrix was monitored via changes in the oxidation peak currents of cyclic voltammograms. These measurements were made using a two-compartment diffusion chamber with the sample positioned well away from the working electrodes and a single-compartment electrode cell where the matrix was in direct contact with the working electrode. The relative merits of these two approaches are considered. Regardless of the approach chosen, amperometry appears well suited to monitoring progressive diffusivity changes through mechanically weak porous structures subject to different solution environments.


Assuntos
Eletroquímica/métodos , Alicerces Teciduais , Soluções Tampão , Colágeno/metabolismo , Colagenases/metabolismo , Difusão/efeitos dos fármacos , Eletrodos , Eletrólitos , Ferrocianetos/farmacologia , Glicosaminoglicanos/metabolismo , Concentração de Íons de Hidrogênio , Membranas Artificiais , Microscopia Eletrônica de Varredura , Oxirredução/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Porosidade/efeitos dos fármacos , Soluções , Fatores de Tempo
15.
Cont Lens Anterior Eye ; 31(2): 57-64, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17962066

RESUMO

Only about 5% of drugs administrated by eye drops are bioavailable, and currently eye drops account for more than 90% of all ophthalmic formulations. The bioavailability of ophthalmic drugs can be improved by a soft contact lens-based ophthalmic drug delivery system. Several polymeric hydrogels have been investigated for soft contact lens-based ophthalmic drug delivery systems: (i) polymeric hydrogels for conventional contact lens to absorb and release ophthalmic drugs; (ii) polymeric hydrogels for piggyback contact lens combining with a drug plate or drug solution; (iii) surface-modified polymeric hydrogels to immobilize drugs on the surface of contact lenses; (iv) polymeric hydrogels for inclusion of drugs in a colloidal structure dispersed in the lens; (v) ion ligand-containing polymeric hydrogels; (vi) molecularly imprinted polymeric hydrogels which provide the contact lens with a high affinity and selectivity for a given drug. Polymeric hydrogels for these contact lens-based ophthalmic drug delivery systems, their advantages and drawbacks are critically analyzed in this review.


Assuntos
Lentes de Contato , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Implantes de Medicamento/química , Hidrogéis/química , Soluções Oftálmicas/administração & dosagem , Portadores de Fármacos/administração & dosagem , Implantes de Medicamento/administração & dosagem , Hidrogéis/administração & dosagem
16.
ACS Biomater Sci Eng ; 4(9): 3327-3346, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435069

RESUMO

In the present study, a conducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) along with a biodegradable polymer poly(ε-caprolactone) (PCL) was used to prepare an electrically conductive, biocompatible, bioactive, and biodegradable nanofibrous scaffold for possible use in neural tissue engineering applications. Core-sheath electrospun nanofibers of PCL as the core and MEH-PPV as the sheath, were surface-functionalized with (3-aminopropyl) triethoxysilane (APTES) and 1,6-hexanediamine to obtain amine-functionalized surface to facilitate cell-biomaterial interactions with the aim of replacing the costly biomolecules such as collagen, fibronectin, laminin, and arginyl-glycyl-aspartic acid (RGD) peptide for surface modification. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the formation of core-sheath morphology of the electrospun nanofibers, whereas Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed successful incorporation of amine functionality after surface functionalization. Adhesion, spreading, and proliferation of 3T3 fibroblasts were enhanced on the surface-functionalized electrospun meshes, whereas the neuronal model rat pheochromocytoma 12 (PC12) cells also adhered and differentiated into sympathetic neurons on these meshes. Under a constant electric field of 500 mV for 2 h/day for 3 consecutive days, the PC12 cells displayed remarkable improvement in the neurite formation and outgrowth on the surface-functionalized meshes that was comparable to those on the collagen-coated meshes under no electrical signal. Electrical stimulation studies further demonstrated that electrically stimulated PC12 cells cultured on collagen I coated meshes yielded more and longer neurites than those of the unstimulated cells on the same scaffolds. The enhanced neurite growth and differentiation suggest the potential use of these scaffolds for neural tissue engineering applications.

17.
Sci Total Environ ; 630: 1237-1245, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554745

RESUMO

Development of porous carbons with high specific surface area (>1200mg-1) targeted at nitrate removal from aqueous solutions is investigated by chemical activation of carbonized rice husk. Potassium carbonate is used as activating and desilicating agent. The effect of post-synthetic treatment by gas phase ammoxidation with ozone/ammonia or oxidation with concentrated nitric acid followed by nitrification with urea on main physicochemical properties and on the effectiveness of the activated carbons in nitrate removal is compared with those determined for a pristine activated carbonized rice husk sample. The two-fold enhancement of nitrate removal by the urea-modified activated carbon in comparison with pristine and ammoxidated sample is in direct correlation with the development of surface basic groups.


Assuntos
Carvão Vegetal/química , Nitratos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Nitratos/análise , Oryza/química , Poluentes Químicos da Água/análise
18.
Gels ; 3(4)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30920534

RESUMO

In this review, the importance of water in hydrogel (HG) properties and structure is analyzed. A variety of methods such as ¹H NMR (nuclear magnetic resonance), DSC (differential scanning calorimetry), XRD (X-ray powder diffraction), dielectric relaxation spectroscopy, thermally stimulated depolarization current, quasi-elastic neutron scattering, rheometry, diffusion, adsorption, infrared spectroscopy are used to study water in HG. The state of HG water is rather non-uniform. According to thermodynamic features of water in HG, some of it is non-freezing and strongly bound, another fraction is freezing and weakly bound, and the third fraction is non-bound, free water freezing at 0 °C. According to structural features of water in HG, it can be divided into two fractions with strongly associated and weakly associated waters. The properties of the water in HG depend also on the amounts and types of solutes, pH, salinity, structural features of HG functionalities.

19.
Biomed Mater ; 12(3): 035001, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28270638

RESUMO

Nanoporous adsorbents are promising materials to augment the efficacy of haemodialysis for the treatment of end stage renal disease where mortality rates remain unacceptably high despite improvements in membrane technology. Complications are linked in part to inefficient removal of protein bound and high molecular weight uraemic toxins including key marker molecules albumin bound indoxyl sulphate (IS) and p-cresyl sulphate (PCS) and large inflammatory cytokines such as IL-6. The following study describes the assessment of a nanoporous activated carbon monolith produced using a novel binder synthesis route for scale up as an in line device to augment haemodialysis through adsorption of these toxins. Small and large monoliths were synthesised using an optimised ratio of lignin binder to porous resin of 1 in 4. Small monoliths showing combined significant IS, p-CS and IL-6 adsorption were used to measure haemocompatibility in an ex vivo healthy donor blood perfusion model, assessing coagulation, platelet, granulocyte, T cells and complement activation, haemolysis, adsorption of electrolytes and plasma proteins. The small monoliths were tested in a naive rat model and showed stable blood gas values, blood pressure, blood biochemistry and the absence of coagulopathies. These monoliths were scaled up to a clinically relevant size and were able to maintain adsorption of protein bound uraemic toxins IS, PCS and high molecular weight cytokines TNF-α and IL-6 over 240 min using a flow rate of 300 ml min-1 without platelet activation. The nanoporous monoliths where haemocompatible and retained adsorptive efficacy on scale up with negligible pressure drop across the system indicating potential for use as an in-line device to improve haemodialysis efficacy by adsorption of otherwise poorly removed uraemic toxins.


Assuntos
Resinas Acrílicas/química , Remoção de Componentes Sanguíneos/instrumentação , Lignina/química , Nanopartículas/química , Diálise Renal/instrumentação , Ultrafiltração/métodos , Uremia/sangue , Absorção Fisico-Química , Adsorção , Remoção de Componentes Sanguíneos/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Nanopartículas/ultraestrutura , Nanoporos/ultraestrutura , Diálise Renal/métodos , Ultrafiltração/instrumentação , Uremia/prevenção & controle
20.
Eur J Pharm Sci ; 105: 55-63, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476616

RESUMO

The development of liposome-nanoparticle colloid systems offers a versatile approach towards the manufacture of multifunctional therapeutic platforms. A strategy to encapsulate small metallic nanoparticles (<4nm) within multilamellar vesicles, effected by exploiting electrostatic interactions was investigated. Two liposome-gold nanoparticle (lipo-GNP) systems were prepared by the reverse-phase evaporation method employing cationic or anionic surface functionalised particles in combination with oppositely charged lipid compositions with subsequent post-formulation PEGylation. Structural characterisation using electron microscopy and elemental analysis revealed a regular distribution of GNPs between adjacent lipid bilayers of intact liposomes. Nanoparticle encapsulation efficacy of the two lipo-GNP systems was revealed to be significantly different (p=0.03), evaluated by comparing the ratio of measured lipid to gold concentration (loading content) determined by a colorimetric assay and atomic emission spectroscopy, respectively. It was concluded that the developed synthetic strategy is an effective approach for the preparation of liposome-nanoparticle colloids with potential to control the relative concentration of encapsulated particles to lipids by providing favourable electrostatic interactions.


Assuntos
Ouro/química , Lipossomos/química , Nanopartículas Metálicas/química , Lipídeos/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA