Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Res ; 234: 116588, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423368

RESUMO

Microbially induced calcite precipitation (MICP) is an efficient and eco-friendly technique that has attracted significant interest for resolving various problems in the soil (erosion, improving structural integrity and water retention, etc.), remediation of heavy metals, production of self-healing concrete or restoration of different concrete structures. The success of most common MICP methods depends on microorganisms degrading urea which leads to the formation of CaCO3 crystals. While Sporosarcina pasteurii is a well-known microorganism for MICP, other soil abundant microorganisms, such as Staphylococcus bacteria have not been thoroughly studied for its efficiency in bioconsolidation though MICP is a very important proccess which can ensure soil quality and health. This study aimed to analyze MICP process at the surface level in Sporosarcina pasteurii and a newly screened Staphylococcus sp. H6 bacterium as well as show the possibility of this new microorganism to perform MICP. It was observed that Staphylococcus sp. H6 culture precipitated 157.35 ± 3.3 mM of Ca2+ ions from 200 mM, compared to 176 ± 4.8 mM precipitated by S. pasteurii. The bioconsolidation of sand particles was confirmed by Raman spectroscopy and XRD analysis, which indicated the formation of CaCO3 crystals for both Staphylococcus sp. H6 and S. pasteurii cells. The water-flow test suggested a significant reduction in water permeability in bioconsolidated sand samples for both Staphylococcus sp. H6 and S. pasteurii. Notably, this study provides the first evidence that CaCO3 precipitation occurs on the surface of Staphylococcus and S. pasteurii cells within the initial 15-30 min after exposure to the biocementation solution. Furthermore, Atomic force microscopy (AFM) indicated rapid changes in cell roughness, with bacterial cells becoming completely coated with CaCO3 crystals after 90 min incubation with a biocementation solution. To our knowledge, this is the first time where atomic force microscopy was used to visualize the dynamic of MICP on cell surface.


Assuntos
Carbonato de Cálcio , Urease , Urease/química , Urease/metabolismo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Staphylococcus/metabolismo , Areia , Bactérias/metabolismo , Solo , Água
2.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009774

RESUMO

Polypyrrole (Ppy) and poly(methylene blue) (PMB) heterostructure (Ppy-PMB) was electrochemically formed on the indium tin oxide (ITO) coated glass slides, which served as working electrodes. For electropolymerization, a solution containing pyrrole, methylene blue, and a saccharide (lactose, sucrose, or heparin) that served as dopant was used. The aim of this study was to compare the effect of the saccharides (lactose, sucrose, and heparin) on the electrochromic properties of the Ppy-PMB layer. AFM and SEM have been used for the analysis of the surface dominant features of the Ppy-PMB layers. From these images, it was concluded that the saccharides used in this study have a moderate effect on the surface morphology. Electrochromic properties were analyzed with respect to the changes of absorbance of the layer at two wavelengths (668 nm and 750 nm) by changing the pH of the surrounding solution and the potential between +0.8 V and -0.8 V. It was demonstrated that the highest absorbance changes are characteristic for all layers in the acidic media. Meanwhile, the absorbance changes of the layers were decreased in the more alkaline media. It was determined that the Ppy-PMB layers with heparin as a dopant were more mechanically stable in comparison to the layers doped with lactose and sucrose. Therefore, the Ppy-PMB layer doped with heparin was selected for the further experiment and it was applied in the design of electrochromic sensors for the determination of three xanthine derivatives: caffeine, theobromine, and theophylline. A linear relationship of ΔA (∆A = A+0.8V - A-0.8V) vs. concentration was determined for all three xanthine derivatives studied. The largest change in optical absorption was observed in the case of theophylline determination.


Assuntos
Polímeros , Pirróis , Azul de Metileno , Polissacarídeos
3.
Phys Chem Chem Phys ; 19(2): 1029-1038, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27942641

RESUMO

In this research study, we investigated the morphology of polypyrrole nanostructures, which were formed during the electrochemical deposition of conducting polymer. An electrochemical quartz crystal microbalance (EQCM) cell equipped with a flow-through system was employed to exchange solutions of different compositions within the EQCM cell. When bare PBS buffer in the EQCM cell was exchanged with PBS buffer with pyrrole we observed a distinct increase in the resonance frequency Δf. This change in the resonance frequency and electrical capacitance, which was calculated from electrochemical impedance spectroscopy (EIS) data, illustrate that pyrrole on the surface of the gold electrode formed an adsorbed layer (adlayer). The formation of a pyrrole adlayer before the potential pulse that induced polymerization was investigated by QCM-based measurements. The electrochemical polymerization of this adlayer was induced by a single potential pulse and a nanostructured layer, which consisted of adsorbed polypyrrole (Ppy) nanoparticles with a diameter of 50 nm, was formed. QCM and EIS data revealed that by the next cycle of the electrochemical formation of Ppy, which was investigated after flow-through-based exchange of solutions, the initially formed Ppy surface was covered by the adlayer of pyrrole. This adlayer was desorbed when pyrrole was removed from the solution. When electrochemical polymerization was performed using 50 potential pulses, a Ppy layer, which had more complex morphology, was formed on the EQCM crystal. Scanning electron microscopy showed that the conductivity of this layer was unequally distributed. We observed that the polypyrrole layer formed by electrochemical deposition, which was performed using potential pulses, was formed out of aggregated spherical Ppy particles with a diameter of 50 nm.

4.
Langmuir ; 31(10): 3186-93, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25706444

RESUMO

Electrochemical quartz crystal microbalance (EQCM) was used for the evaluation of conducting polymer polypyrrole (Ppy), which was formed by a sequence of potential pulses on a Au-plated EQCM disc. The Ppy layer was obtained from freshly prepared polymerization solution consisting of pyrrole that was dissolved in phosphate buffer. The main aim of the study was to determine some aspects of the Ppy layer formation process. The polymerization process was estimated by EQCM and chronoamperometry. The Cottrell equation was used for the integration of total charge that was passing through the electrochemical cell during the formation of the Ppy-based layer. It was found that the charge of the electrical double layer, which was estimated while applying an Anson plot, is negative. From this observation, it could be assumed that the pyrrole oxidation process could be well described by principles of heterogeneous kinetics. The negative value of the electrical double layer was the result of a charge-transfer restriction. This restriction of charge transfer could occur due to partial blocking of the electrode surface by an aggregated Ppy particle-based layer. Quartz crystal motional resistance (R) was taken into account during this research. Ppy layer formation is represented schematically on the basis of the obtained experimental results and analytical data.

5.
Heliyon ; 10(15): e34815, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144937

RESUMO

Noble metal nanoparticles, specifically gold and silver, are extensively utilized in sensors, catalysts, surface-enhanced Raman scattering (SERS), and optical-electronic components due to their unique localized surface plasmon resonance (LSPR) properties. The production of these nanoparticles involves various methods, but among the environmentally friendly approaches, laser ablation stands out as it eliminates the need for toxic chemicals during purification. However, nanoparticle aggregation poses a challenge in laser ablation, necessitating the addition of extra materials that contaminate the otherwise clean process. In this study, we investigate the effectiveness of a biocompatible material, potassium chloride (KCl), in preventing particle aggregation. Although salt is known to trigger aggregation, we observed that certain concentrations of KCl can slow down this process. Over an eight-week period, we examined the aggregation rate, extinction behavior, and stability of gold, silver, and hybrid nanoparticles generated in different KCl concentrations. Extinction spectra, SEM images, SERS signal strength, and zeta potential were analyzed. Our results demonstrate that laser ablation in water and salt solutions yields nanoparticles with a spherical shape and a negative zeta potential. Importantly, we identified the optimal concentration of potassium chloride salt that maintains solution stability and SERS signal strength. Adsorbed chloride ions on silver nanoparticles were evidenced by low-frequency SERS band near 242 cm-1. A better understanding of the effect of KCl concentration on the properties of noble metal nanoparticles can lead to improved generation protocols and the development of tailored nanoparticle systems with enhanced stability and SERS activity.

6.
Analyst ; 138(5): 1427-33, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23337885

RESUMO

A direct immunoassay format with human growth hormone (hGH) immobilized on a self assembled monolayer modified surface plasmon resonance (SPR) chip was chosen to detect specific antibodies (anti-hGH) using different electrochemical techniques. Atomic force microscopy imaging and SPR were used as control methods for the evaluation and confirmation of the antigen-antibody complex formation. The applicability and sensitivity of candidate electrochemical techniques to develop an accurate and sensitive electrochemical immunosensor were investigated. Four electrochemical methods for anti-hGH determination - pulse amperometry (PA), cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV), were compared. Higher sensitivity of the developed immunosensor was observed using PA and CV: analytical signal registered using the PA method was 2.50 times higher in comparison with CV, 16.3 times higher in comparison with SWV and 24.5 times higher in comparison with the DPV method. In the case of PA detection method, the limit of detection was lower (75 nM) than that of the CV method (108 nM).


Assuntos
Complexo Antígeno-Anticorpo/análise , Técnicas Eletroquímicas/métodos , Hormônio do Crescimento Humano/imunologia , Imunoensaio/métodos , Ressonância de Plasmônio de Superfície/métodos , Complexo Antígeno-Anticorpo/imunologia , Humanos , Proteínas Imobilizadas/imunologia , Limite de Detecção , Microscopia de Força Atômica
7.
ACS Omega ; 8(51): 49396-49405, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162725

RESUMO

The present study introduces a novel method for the synthesis of magneto-plasmonic nanoparticles (MPNPs) with enhanced functionality for surface-enhanced Raman scattering (SERS) applications. By employing pulsed laser ablation in liquid (PLAL) to synthesize plasmonic nanoparticles and wet chemistry to synthesize magnetic nanoparticles, we successfully fabricated chemically pure hybrid Fe3O4@Au and Fe3O4@Ag nanoparticles. We demonstrated a straightforward approach of an electrostatic attachment of the plasmonic and magnetic parts using positively charged polyethylenimine. The MPNPs displayed high SERS sensitivity and reproducibility, and the magnetic part allowed for the controlled separation of the nanoparticles from the reaction mixture, their subsequent concentration, and their precise deposition onto a specified surface area. Additionally, we fabricated alloy based MPNPs from AgxAu100-x (x = 50 and 80 wt %) targets with distinct localized surface plasmon resonance (LSPR) wavelengths. The compositions, morphologies, and optical properties of the nanoparticles were characterized by using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis spectroscopy, and multiwavelength Raman spectroscopy. A standard SERS marker, 4-mercaptobenzoic acid (4-MBA), validated the enhancement properties of the MPNPs and found an enhancement factor of 2 × 108 for the Fe3O4@Ag nanoparticles at 633 nm excitation. Lastly, we applied MPNP-enhanced Raman spectroscopy for the analysis of the biologically relevant molecule adenine and found a limit of detection of 10-7 M at 785 nm excitation. The integration of PLAL and wet chemical methods enabled the relatively fast and cost-effective production of MPNPs characterized by high SERS sensitivity and signal reproducibility that are required in various fields, including biomedicine, food safety, materials science, security, and defense.

8.
Materials (Basel) ; 15(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35683306

RESUMO

The synthesis of magnetic particles triggers the interest of many scientists due to their relevant properties and wide range of applications in the catalysis, nanomedicine, biosensing and magnetic separation fields. A fast synthesis of iron oxide magnetic particles using an eco-friendly and facile microwave-assisted solvothermal method is presented in this study. Submicron Fe3O4 spheres were prepared using FeCl3 as an iron source, ethylene glycol as a solvent and reductor and sodium acetate as a precipitating and nucleating agent. The influence of the presence of polyethylene glycol as an additional reductor and heat absorbent was also evaluated. We reduce the synthesis time to 1 min by increasing the reaction temperature using the microwave-assisted solvothermal synthesis method under pressure or by adding PEG at lower temperatures. The obtained magnetite spheres are 200-300 nm in size and are composed of 10-30 nm sized crystallites. The synthesized particles were investigated using the XRD, TGA, pulsed-field magnetometry, Raman and FTIR methods. It was determined that adding PEG results in spheres with mixed magnetite and maghemite compositions, and the synthesis time increases the size of the crystallites. The presented results provide insights into the microwave-assisted solvothermal synthesis method and ensure a fast route to obtaining spherical magnetic particles composed of different sized nanocrystallites.

9.
Nanomaterials (Basel) ; 12(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014725

RESUMO

Bifunctional magneto-plasmonic nanoparticles that exhibit synergistically magnetic and plasmonic properties are advanced substrates for surface-enhanced Raman spectroscopy (SERS) because of their excellent controllability and improved detection potentiality. In this study, composite magneto-plasmonic nanoparticles (Fe3O4@AgNPs) were formed by mixing colloid solutions of 50 nm-sized magnetite nanoparticles with 13 nm-sized silver nanoparticles. After drying of the layer of composite Fe3O4@AgNPs under a strong magnetic field, they outperformed the conventional silver nanoparticles during SERS measurements in terms of signal intensity, spot-to-spot, and sample-to-sample reproducibility. The SERS enhancement factor of Fe3O4@AgNP-adsorbed 4-mercaptobenzoic acid (4-MBA) was estimated to be 3.1 × 107 for a 633 nm excitation. In addition, we show that simply by changing the initial volumes of the colloid solutions, it is possible to control the average density of the silver nanoparticles, which are attached to a single magnetite nanoparticle. UV-Vis and SERS data revealed a possibility to tune the plasmonic resonance frequency of Fe3O4@AgNPs. In this research, the plasmon resonance maximum varied from 470 to 800 nm, suggesting the possibility to choose the most suitable nanoparticle composition for the particular SERS experiment design. We emphasize the increased thermal stability of composite nanoparticles under 532 and 442 nm laser light irradiation compared to that of bare Fe3O4 nanoparticles. The Fe3O4@AgNPs were further characterized by XRD, TEM, and magnetization measurements.

10.
Polymers (Basel) ; 14(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35215694

RESUMO

The selective deposition of metals on dielectric materials is widely used in the electronic industry, making electro-conductive connections between circuit elements. We report a new low-cost laser-assisted method for the selective deposition of copper tracks on polymer surfaces by electroplating. The technique uses a laser for the selective modification of the polymer surface. The electrical conductivity of some polymers could be increased due to laser irradiation. Polyimide samples were treated using nanosecond and picosecond lasers working at a 1064 nm wavelength. An electro-conductive graphene-like layer was formed on the polymer surface after the laser treatment with selected parameters, and the copper layer thickness of 5-20 µm was deposited on the modified surface by electroplating. The selective laser-assisted electroplating technology allows the fabrication of copper tracks on complex shape dielectric materials. The technology could be used in the manufacturing of molded interconnect devices (MID).

11.
ACS Omega ; 5(23): 14180-14185, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566886

RESUMO

Anisotropic aerogels are promising bulk materials with a porous 3D structure, best known for their large surface area, low density, and extremely low thermal conductivity. Herein, we report the synthesis and some properties of ultralight magnetic nanofibrous GdPO4 aerogels. Our proposed GdPO4 aerogel synthesis route is eco-friendly and does not require any harsh precursors or conditions. The most common route for magnetic aerogel preparation is the introduction of magnetic nanoparticles into the structure during the synthesis procedure. However, the nanofibrous GdPO4 aerogel reported in this work is magnetic by itself already and no additives are required. The hydrogel used for nanofibrous GdPO4 aerogel preparation was synthesized via a hydrothermal route. The hydrogel was freeze-dried and heat-treated to induce a phase transformation from the nonmagnetic trigonal to magnetic monoclinic phase. Density of the obtained magnetic nanofibrous monoclinic GdPO4 aerogel is only ca. 8 mg/cm3.

12.
Talanta ; 200: 378-386, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31036199

RESUMO

Zinc oxide (ZnO) based nanostructures owing unique physical properties - high photoluminescence, biocompatibility and other characteristics, therefore, they attract attention as building blocks suitable for biosensor development. In this research as a target we have used human leukemic cell line IM9 (IM9). IM9 was derived from the patient with a multiple myeloma and expressed cluster of differentiation proteins СD19 on the surface of 85-95% here investigated cancer cells. As a control sample healthy human's peripheral blood mononuclear cells (PBMC) were used and the expression of CD19 protein was found only in 5-9% of these cells. Two types of antibodies labeled by fluorescein isothiocyanate (FITC) were used for the labeling of human leukemic cells: FITC-conjugated mouse antibodies against Human CD19 protein (anti-CD19-FITC*) and FITC-conjugated mouse antibodies against Human IgG1 protein (anti-IgG1-FITC*). In order to demonstrate the applicability of zinc oxide nanorods (ZnO-NRs) based platforms three types of ZnO-NRs-based structures were investigated: (i) ZnO-NRs modified by anti-CD19-FITC*; (ii) ZnO-NRs modified by IM9 cells, which were pre-incubated with anti-CD19-FITC*; (iii) ZnO-NRs modified by PBMC cells, which were pre-incubated with anti-CD19-FITC*. It was demonstrated that IM9 cells after specific interaction with anti-CD19-FITC* bind to ZnO-NRs (ZnO-NRs/IM9 +anti-CD19-FITC*) and photoluminescence based signal significantly increase in comparison with that observed in control samples, which contained PBMC cells incubated with anti-CD19-FITC* (ZnO-NRs/PBMC+anti-CD19-FITC*). The photoluminescence results are in good correlation with the data obtained by flow cytometry. This study illustrate that ZnO-NRs exhibit a photoluminescence signal suitable for the determination of anti-CD19-FITC* labeled IM9 cell line at concentrations - from 10 till 500 cells adsorbed per 1 mm2 of ZnO-NRs platform.


Assuntos
Linfócitos B/patologia , Separação Celular , Imunoensaio/métodos , Leucemia/patologia , Nanotubos/química , Óxido de Zinco/química , Biomarcadores/sangue , Células Cultivadas , Citometria de Fluxo , Humanos , Óxido de Zinco/síntese química
13.
Mater Sci Eng C Mater Biol Appl ; 98: 515-523, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30813053

RESUMO

In this study a polycarbonate filter membrane (PcFM) with 400 nm diameter holes was covered/protruded by single walled carbon nanotubes (SWCNT) and then formed PcFM/SWCNT structure was covered by thin layer of graphene oxide (GO) or reduced graphene oxide (rGO) in order to get the multilayered PcFM/SWCNT/GO and PcFM/SWCNT/rGO coatings, respectively. It was determined that the SWCNTs filaments were able to form a layer on the polycarbonate membrane having a number of carbon nanotube arranged in different orientations. A fraction of SWCNT filaments protruded through the holes of polycarbonate membrane and in such way significantly enhanced the adhesion of SWCNT-based layer and provided electrical conductivity across the PcFM. Atomic force microscopy (AFM), scanning electron microscopy (SEM) images and Raman spectroscopy-based evaluation revealed the characteristic morphology features: wide distribution of height profile, separate GO/rGO flakes on the top of PcFM/SWCNT/GO structure and close attachment of rGO flakes on the top of multilayered PcFM/SWCNT/rGO coating. Performed contact angle measurement (CAM) enabled to determine the surface energy components and wettability data of prepared coatings. Both PcFM/SWCNT/GO and PcFM/SWCNT/rGO coatings were modified with glucose oxidase (GOx). Amperometric measurements revealed that multilayered PcFM/SWCNT/rGO/GOx coating is the most suitable structure for glucose biosensor design.


Assuntos
Técnicas Biossensoriais/métodos , Materiais Revestidos Biocompatíveis/química , Técnicas Eletroquímicas/métodos , Grafite/química , Nanotubos de Carbono/química , Impedância Elétrica , Eletrodos , Cinética , Oxirredução , Análise Espectral Raman
14.
Colloids Surf B Biointerfaces ; 164: 224-231, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29413600

RESUMO

In this study, the metabolism of yeast cells (Saccharomyces cerevisiae) was utilized for the synthesis of the conducting polymer - polypyrrole (Ppy).Yeast cells were modified in situ by synthesized Ppy. The Ppy was formed in the cell wall by redox-cycling of [Fe(CN)6]3-/4-, performed by the yeast cells. Fluorescence microscopy, enzymatic digestions, atomic force microscopy and isotope ratio mass spectroscopy were applied to determine both the polymerization reaction itself and the polymer location in yeast cells. Ppy formation resulted in enhanced resistance to lytic enzymes, significant increase of elasticity and alteration of other mechanical cell wall properties evaluated by atomic force microscopy (AFM). The suggested method of polymer synthesis allows the introduction of polypyrrole structures within the cell wall, which is build up from polymers consisting of carbohydrates. This cell wall modification strategy could increase the usefulness of yeast as an alternative energy source in biofuel cells, and in cell based biosensors.


Assuntos
Parede Celular/química , Polímeros/síntese química , Pirróis/síntese química , Saccharomyces cerevisiae/metabolismo , Adsorção , Fenômenos Biomecânicos , Tamanho Celular , Concanavalina A/química , Módulo de Elasticidade , Fluoresceína-5-Isotiocianato/metabolismo , Polímeros/química , Pirróis/química , Saccharomyces cerevisiae/citologia , Coloração e Rotulagem
15.
Materials (Basel) ; 10(1)2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28772389

RESUMO

We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm² intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.

16.
Enzyme Microb Technol ; 83: 40-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26777249

RESUMO

Yeast cells are often used as a model system in various experiments. Moreover, due to their high metabolic activity, yeast cells have a potential to be applied as elements in the design of biofuel cells and biosensors. However a wider application of yeast cells in electrochemical systems is limited due to high electric resistance of their cell wall. In order to reduce this problem we have polymerized conducting polymer polypyrrole (Ppy) directly in the cell wall and/or within periplasmic membrane. In this research the formation of Ppy was induced by [Fe(CN)6](3-)ions, which were generated from K4[Fe(CN)6], which was initially added to polymerization solution. The redox process was catalyzed by oxido-reductases, which are present in the plasma membrane of yeast cells. The formation of Ppy was confirmed by spectrophotometry and atomic force microscopy. It was confirmed that the conducting polymer polypyrrole was formed within periplasmic space and/or within the cell wall of yeast cells, which were incubated in solution containing pyrrole, glucose and [Fe(CN)6](4-). After 24h drying at room temperature we have observed that Ppy-modified yeast cell walls retained their initial spherical form. In contrast to Ppy-modified cells, the walls of unmodified yeast have wrinkled after 24h drying. The viability of yeast cells in the presence of different pyrrole concentrations has been evaluated.


Assuntos
Ferricianetos/metabolismo , Polímeros/metabolismo , Pirróis/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas Biossensoriais , Parede Celular/metabolismo , Técnicas Eletroquímicas , Ferricianetos/química , Microscopia de Força Atômica , Oxirredução , Periplasma/metabolismo , Polímeros/química , Pirróis/química , Espectrofotometria
17.
Sci Rep ; 6: 26098, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27180941

RESUMO

A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu(3+) phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu(3+) showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu(3+) doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu(3+) phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour.

18.
Sci Rep ; 5: 13150, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26310910

RESUMO

Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.


Assuntos
Saccharomyces cerevisiae/citologia , Análise Espectral Raman/métodos , Simulação por Computador , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Prata/química , Análise de Célula Única , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA