RESUMO
Lysosomal storage diseases (LSDs) are typically caused by a deficiency in a soluble acid hydrolase and are characterized by the accumulation of undegraded substrates in the lysosome. Determining the role of specific cell types in the pathogenesis of LSDs is a major challenge due to the secretion and subsequent uptake of lysosomal hydrolases by adjacent cells, often referred to as "cross-correction." Here we create and validate a conditional mouse model for cell-autonomous expression of galactocerebrosidase (GALC), the lysosomal enzyme deficient in Krabbe disease. We show that lysosomal membrane-tethered GALC (GALCLAMP1) retains enzyme activity, is able to cleave galactosylsphingosine, and is unable to cross-correct. Ubiquitous expression of GALCLAMP1 fully rescues the phenotype of the GALC-deficient mouse (Twitcher), and widespread deletion of GALCLAMP1 recapitulates the Twitcher phenotype. We demonstrate the utility of this model by deleting GALCLAMP1 specifically in myelinating Schwann cells in order to characterize the peripheral neuropathy seen in Krabbe disease.
Assuntos
Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/patologia , Lisossomos/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Células de Schwann/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibroblastos , Galactosilceramidase/genética , Técnicas de Silenciamento de Genes , Humanos , Membranas Intracelulares/metabolismo , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Proteínas Recombinantes de Fusão/genéticaRESUMO
Deficiencies of galactosylceramidase and glucocerebrosidase result in the accumulation of galactosylsphingosine (GalSph) and glucosylsphingosine (GluSph) in Krabbe and Gaucher diseases, respectively. GalSph and GluSph are useful biomarkers for both diagnosis and monitoring of treatment effects. We have developed and validated a sensitive, accurate, high-throughput assay for simultaneous determination of the concentration of GalSph and GluSph in mouse serum. GalSph and GluSph and their deuterated internal standards were extracted by protein precipitation in quantitative recoveries, baseline separated by hydrophilic interaction chromatography and detected by positive-ion electrospray mass spectrometry in multiple reaction monitoring mode. Total run time was 7 min. The lower limit of quantification was 0.2 ng/mL for both GalSph and GluSph. Sample stability, assay precision and accuracy, and method robustness were demonstrated. This method has been successfully applied to measurement of these lipid biomarkers in a natural history study in twitcher (Krabbe) mice.
Assuntos
Biomarcadores/sangue , Cromatografia Líquida/métodos , Doença de Gaucher/sangue , Psicosina/análogos & derivados , Psicosina/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Modelos Animais de Doenças , Doença de Gaucher/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Lineares , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Globoid cell leukodystrophy (GLD) is an autosomal recessive neurodegenerative disorder caused by a deficiency of the lysosomal enzyme galactocerebrosidase (GALC). GALC is responsible for catabolism of certain glycolipids, including the toxic compound galactosylsphingosine (psychosine). Histological signs of disease include the widespread loss of myelin in the central and peripheral nervous systems, profound neruroinflammation, and axonal degeneration. Patients suffering from GLD also display neurological deterioration. Many different individual therapies have been investigated in the murine model of the GLD, the Twitcher mouse, with minimal success. The current standard of care for GLD patients, hematopoietic stem cell transplantation, serves only to delay disease progression and is not an effective cure. However, combination therapies that target different pathogenic mechanisms/pathways have been more effective at reducing histological signs of disease, delaying disease onset, prolonging life span, and improving behavioral/cognitive functions in rodent models of Krabbe's disease. In some cases, dramatic synergy between the various therapies has been observed. © 2016 Wiley Periodicals, Inc.
Assuntos
Terapia Combinada/métodos , Leucodistrofia de Células Globoides/terapia , Animais , Anti-Inflamatórios/uso terapêutico , Transplante de Medula Óssea , Ciclosserina/uso terapêutico , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Galactosilceramidase/deficiência , Terapia Genética , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismoRESUMO
Krabbe disease (KD) and metachromatic leukodystrophy (MLD) are caused by accumulation of the glycolipids galactosylceramide (GalCer) and sulfatide and their toxic metabolites psychosine and lysosulfatide, respectively. We discovered a potent and selective small molecule inhibitor (S202) of ceramide galactosyltransferase (CGT), the key enzyme for GalCer biosynthesis, and characterized its use as substrate reduction therapy (SRT). Treating a KD mouse model with S202 dose-dependently reduced GalCer and psychosine in the central (CNS) and peripheral (PNS) nervous systems and significantly increased lifespan. Similarly, treating an MLD mouse model decreased sulfatides and lysosulfatide levels. Interestingly, lower doses of S202 partially inhibited CGT and selectively reduced synthesis of non-hydroxylated forms of GalCer and sulfatide, which appear to be the primary source of psychosine and lysosulfatide. Higher doses of S202 more completely inhibited CGT and reduced the levels of both non-hydroxylated and hydroxylated forms of GalCer and sulfatide. Despite the significant benefits observed in murine models of KD and MLD, chronic CGT inhibition negatively impacted both the CNS and PNS of wild-type mice. Therefore, further studies are necessary to elucidate the full therapeutic potential of CGT inhibition.