Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560278

RESUMO

Dynamic posturography combined with wearable sensors has high sensitivity in recognizing subclinical balance abnormalities in patients with Parkinson's disease (PD). However, this approach is burdened by a high analytical load for motion analysis, potentially limiting a routine application in clinical practice. In this study, we used machine learning to distinguish PD patients from controls, as well as patients under and not under dopaminergic therapy (i.e., ON and OFF states), based on kinematic measures recorded during dynamic posturography through portable sensors. We compared 52 different classifiers derived from Decision Tree, K-Nearest Neighbor, Support Vector Machine and Artificial Neural Network with different kernel functions to automatically analyze reactive postural responses to yaw perturbations recorded through IMUs in 20 PD patients and 15 healthy subjects. To identify the most efficient machine learning algorithm, we applied three threshold-based selection criteria (i.e., accuracy, recall and precision) and one evaluation criterion (i.e., goodness index). Twenty-one out of 52 classifiers passed the three selection criteria based on a threshold of 80%. Among these, only nine classifiers were considered "optimum" in distinguishing PD patients from healthy subjects according to a goodness index ≤ 0.25. The Fine K-Nearest Neighbor was the best-performing algorithm in the automatic classification of PD patients and healthy subjects, irrespective of therapeutic condition. By contrast, none of the classifiers passed the three threshold-based selection criteria in the comparison of patients in ON and OFF states. Overall, machine learning is a suitable solution for the early identification of balance disorders in PD through the automatic analysis of kinematic data from dynamic posturography.


Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Humanos , Doença de Parkinson/diagnóstico , Aprendizado de Máquina , Algoritmos , Redes Neurais de Computação , Máquina de Vetores de Suporte , Equilíbrio Postural/fisiologia
2.
Sensors (Basel) ; 21(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467072

RESUMO

The estimation of the body's center of mass (CoM) trajectory is typically obtained using force platforms, or optoelectronic systems (OS), bounding the assessment inside a laboratory setting. The use of magneto-inertial measurement units (MIMUs) allows for more ecological evaluations, and previous studies proposed methods based on either a single sensor or a sensors' network. In this study, we compared the accuracy of two methods based on MIMUs. Body CoM was estimated during six postural tasks performed by 15 healthy subjects, using data collected by a single sensor on the pelvis (Strapdown Integration Method, SDI), and seven sensors on the pelvis and lower limbs (Biomechanical Model, BM). The accuracy of the two methods was compared in terms of RMSE and estimation of posturographic parameters, using an OS as reference. The RMSE of the SDI was lower in tasks with little or no oscillations, while the BM outperformed in tasks with greater CoM displacement. Moreover, higher correlation coefficients were obtained between the posturographic parameters obtained with the BM and the OS. Our findings showed that the estimation of CoM displacement based on MIMU was reasonably accurate, and the use of the inertial sensors network methods should be preferred to estimate the kinematic parameters.


Assuntos
Fenômenos Biomecânicos , Humanos , Extremidade Inferior , Pelve
3.
Sensors (Basel) ; 20(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168844

RESUMO

Ergonomics evaluation through measurements of biomechanical parameters in real time has a great potential in reducing non-fatal occupational injuries, such as work-related musculoskeletal disorders. Assuming a correct posture guarantees the avoidance of high stress on the back and on the lower extremities, while an incorrect posture increases spinal stress. Here, we propose a solution for the recognition of postural patterns through wearable sensors and machine-learning algorithms fed with kinematic data. Twenty-six healthy subjects equipped with eight wireless inertial measurement units (IMUs) performed manual material handling tasks, such as lifting and releasing small loads, with two postural patterns: correctly and incorrectly. Measurements of kinematic parameters, such as the range of motion of lower limb and lumbosacral joints, along with the displacement of the trunk with respect to the pelvis, were estimated from IMU measurements through a biomechanical model. Statistical differences were found for all kinematic parameters between the correct and the incorrect postures (p < 0.01). Moreover, with the weight increase of load in the lifting task, changes in hip and trunk kinematics were observed (p < 0.01). To automatically identify the two postures, a supervised machine-learning algorithm, a support vector machine, was trained, and an accuracy of 99.4% (specificity of 100%) was reached by using the measurements of all kinematic parameters as features. Meanwhile, an accuracy of 76.9% (specificity of 76.9%) was reached by using the measurements of kinematic parameters related to the trunk body segment.


Assuntos
Ergonomia/métodos , Remoção/efeitos adversos , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão/métodos , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Fenômenos Biomecânicos/fisiologia , Humanos , Extremidade Inferior/fisiologia , Doenças Musculoesqueléticas/etiologia , Doenças Musculoesqueléticas/prevenção & controle , Doenças Profissionais/etiologia , Doenças Profissionais/prevenção & controle , Postura/fisiologia , Medição de Risco , Adulto Jovem
4.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517013

RESUMO

Over the last two decades, experimental studies in humans and other vertebrates have increasingly used muscle synergy analysis as a computational tool to examine the physiological basis of motor control. The theoretical background of muscle synergies is based on the potential ability of the motor system to coordinate muscles groups as a single unit, thus reducing high-dimensional data to low-dimensional elements. Muscle synergy analysis may represent a new framework to examine the pathophysiological basis of specific motor symptoms in Parkinson's disease (PD), including balance and gait disorders that are often unresponsive to treatment. The precise mechanisms contributing to these motor symptoms in PD remain largely unknown. A better understanding of the pathophysiology of balance and gait disorders in PD is necessary to develop new therapeutic strategies. This narrative review discusses muscle synergies in the evaluation of motor symptoms in PD. We first discuss the theoretical background and computational methods for muscle synergy extraction from physiological data. We then critically examine studies assessing muscle synergies in PD during different motor tasks including balance, gait and upper limb movements. Finally, we speculate about the prospects and challenges of muscle synergy analysis in order to promote future research protocols in PD.


Assuntos
Eletromiografia , Músculo Esquelético , Doença de Parkinson , Marcha , Humanos , Movimento , Músculo Esquelético/fisiopatologia , Doença de Parkinson/fisiopatologia
5.
Sensors (Basel) ; 20(11)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517315

RESUMO

Balance impairment is a major mechanism behind falling along with environmental hazards. Under physiological conditions, ageing leads to a progressive decline in balance control per se. Moreover, various neurological disorders further increase the risk of falls by deteriorating specific nervous system functions contributing to balance. Over the last 15 years, significant advancements in technology have provided wearable solutions for balance evaluation and the management of postural instability in patients with neurological disorders. This narrative review aims to address the topic of balance and wireless sensors in several neurological disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, and other neurodegenerative and acute clinical syndromes. The review discusses the physiological and pathophysiological bases of balance in neurological disorders as well as the traditional and innovative instruments currently available for balance assessment. The technical and clinical perspectives of wearable technologies, as well as current challenges in the field of teleneurology, are also examined.


Assuntos
Doenças do Sistema Nervoso , Equilíbrio Postural , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Acidentes por Quedas/prevenção & controle , Humanos , Doenças do Sistema Nervoso/diagnóstico
6.
Sensors (Basel) ; 20(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861945

RESUMO

Maintaining balance stability while turning in a quasi-static stance and/or in dynamic motion requires proper recovery mechanisms to manage sudden center-of-mass displacement. Furthermore, falls during turning are among the main concerns of community-dwelling elderly population. This study investigates the effect of aging on reactive postural responses to continuous yaw perturbations on a cohort of 10 young adults (mean age 28 ± 3 years old) and 10 older adults (mean age 61 ± 4 years old). Subjects underwent external continuous yaw perturbations provided by the RotoBit1D platform. Different conditions of visual feedback (eyes opened and eyes closed) and perturbation intensity, i.e., sinusoidal rotations on the horizontal plane at different frequencies (0.2 Hz and 0.3 Hz), were applied. Kinematics of axial body segments was gathered using three inertial measurement units. In order to measure reactive postural responses, we measured body-absolute and joint absolute rotations, center-of-mass displacement, body sway, and inter-joint coordination. Older adults showed significant reduction in horizontal rotations of body segments and joints, as well as in center-of-mass displacement. Furthermore, older adults manifested a greater variability in reactive postural responses than younger adults. The abnormal reactive postural responses observed in older adults might contribute to the well-known age-related difficulty in dealing with balance control during turning.


Assuntos
Envelhecimento , Equilíbrio Postural/fisiologia , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Cabeça/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Sensors (Basel) ; 18(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558410

RESUMO

Monitoring gait quality in daily activities through wearable sensors has the potential to improve medical assessment in Parkinson's Disease (PD). In this study, four gait partitioning methods, two based on thresholds and two based on a machine learning approach, considering the four-phase model, were compared. The methods were tested on 26 PD patients, both in OFF and ON levodopa conditions, and 11 healthy subjects, during walking tasks. All subjects were equipped with inertial sensors placed on feet. Force resistive sensors were used to assess reference time sequence of gait phases. Goodness Index (G) was evaluated to assess accuracy in gait phases estimation. A novel synthetic index called Gait Phase Quality Index (GPQI) was proposed for gait quality assessment. Results revealed optimum performance (G < 0.25) for three tested methods and good performance (0.25 < G < 0.70) for one threshold method. The GPQI resulted significantly higher in PD patients than in healthy subjects, showing a moderate correlation with clinical scales score. Furthermore, in patients with severe gait impairment, GPQI was found higher in OFF than in ON state. Our results unveil the possibility of monitoring gait quality in PD through real-time gait partitioning based on wearable sensors.


Assuntos
Marcha , , Humanos , Aprendizado de Máquina , Doença de Parkinson
8.
Clin Neurophysiol ; 132(10): 2422-2430, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34454269

RESUMO

OBJECTIVE: Early postural instability (PI) is a red flag for the diagnosis of Parkinson's disease (PD). Several patients, however, fall within the first three years of disease, particularly when turning. We investigated whether PD patients, without clinically overt PI, manifest abnormal reactive postural responses to ecological perturbations resembling turning. METHODS: Fifteen healthy subjects and 20 patients without clinically overt PI, under and not under L-Dopa, underwent dynamic posturography during axial rotations around the longitudinal axis, provided by a robotic mechatronic platform. We measured reactive postural responses, including body displacement and reciprocal movements of the head, trunk, and pelvis, by using a network of three wearable inertial sensors. RESULTS: Patients showed higher body displacement of the head, trunk and pelvis, and lower joint movements at the lumbo-sacral junction than controls. Conversely, movements at the cranio-cervical junction were normal in PD. L-Dopa left reactive postural responses unchanged. CONCLUSIONS: Patients with PD without clinically overt PI manifest abnormal reactive postural responses to axial rotations, unresponsive to L-Dopa. The biomechanical model resulting from our experimental approach supports novel pathophysiological hypotheses of abnormal axial rotations in PD. SIGNIFICANCE: PD patients without clinically overt PI present subclinical balance impairment during axial rotations, unresponsive to L-Dopa.


Assuntos
Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Robótica/métodos , Rotação , Dispositivos Eletrônicos Vestíveis , Idoso , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Diagnóstico Precoce , Feminino , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Equilíbrio Postural/efeitos dos fármacos , Robótica/instrumentação
9.
Front Bioeng Biotechnol ; 8: 581619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195143

RESUMO

The use of motorized treadmills as convenient tools for the study of locomotion has been in vogue for many decades. However, despite the widespread presence of these devices in many scientific and clinical environments, a full consensus on their validity to faithfully substitute free overground locomotion is still missing. Specifically, little information is available on whether and how the neural control of movement is affected when humans walk and run on a treadmill as compared to overground. Here, we made use of linear and non-linear analysis tools to extract information from electromyographic recordings during walking and running overground, and on an instrumented treadmill. We extracted synergistic activation patterns from the muscles of the lower limb via non-negative matrix factorization. We then investigated how the motor modules (or time-invariant muscle weightings) were used in the two locomotion environments. Subsequently, we examined the timing of motor primitives (or time-dependent coefficients of muscle synergies) by calculating their duration, the time of main activation, and their Hurst exponent, a non-linear metric derived from fractal analysis. We found that motor modules were not influenced by the locomotion environment, while motor primitives were overall more regular in treadmill than in overground locomotion, with the main activity of the primitive for propulsion shifted earlier in time. Our results suggest that the spatial and sensory constraints imposed by the treadmill environment might have forced the central nervous system to adopt a different neural control strategy than that used for free overground locomotion, a data-driven indication that treadmills could induce perturbations to the neural control of locomotion.

10.
Clin Neurophysiol ; 130(10): 1789-1797, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31401487

RESUMO

OBJECTIVE: Gait impairment is a highly disabling symptom for Parkinson's disease (PD) patients. Rhythmic auditory stimulation (RAS), has shown to improve spatio-temporal gait parameters in PD, but only a few studies have focused on their effects on gait kinematics, and the ideal stimulation frequency has still not been identified. METHODS: We enrolled 30 PD patients and 18 controls. Patients were evaluated under two conditions (with (ON), and without (OFF) medications) with three different RAS frequencies (90%, 100%, and 110% of the patient's preferred walking cadence). Spatial-temporal parameters, joint angles and gait phases distribution were evaluated. A novel global index (GPQI) was used to quantify the difference in gait phase distribution. RESULTS: Along with benefits in spatial-temporal parameters, GPQI improved significantly with RAS at a frequency of 110% for both ON and OFF medication conditions. In the most severe patients, the same result was observed also with RAS at 100%. CONCLUSIONS: RAS administration, at a frequency of 110% of the preferred walking frequency, can be beneficial in improving the gait pattern in PD patients. SIGNIFICANCE: When rhythmic auditory stimulation is provided to patients with PD, the selection of an adequate frequency of stimulation can optimize their effects on gait pattern.


Assuntos
Estimulação Acústica/métodos , Antiparkinsonianos/uso terapêutico , Marcha/fisiologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Periodicidade , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA