Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biochemistry ; 59(21): 1961-1965, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32401494

RESUMO

Applying enzymatic reactions to produce useful molecules is a central focus of chemical biology. Iron and 2-oxoglutarate (Fe/2OG) enzymes are found in all kingdoms of life and catalyze a broad array of oxidative transformations. Herein, we demonstrate that the activity of an Fe/2OG enzyme can be redirected when changing the targeted carbon hybridization from sp3 to sp2. During leucine 5-hydroxylase catalysis, installation of an olefin group onto the substrate redirects the Fe(IV)-oxo species reactivity from hydroxylation to asymmetric epoxidation. The resulting epoxide subsequently undergoes intramolecular cyclization to form the substituted piperidine, 2S,5S-hydroxypipecolic acid.


Assuntos
Alcenos/metabolismo , Leucina/química , Leucina/metabolismo , Oxigenases de Função Mista/metabolismo , Nostoc/enzimologia , Alcenos/química , Oxigenases de Função Mista/química , Conformação Molecular , Especificidade por Substrato
2.
J Am Chem Soc ; 140(45): 15190-15193, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30376630

RESUMO

Installation of olefins into molecules is a key transformation in organic synthesis. The recently discovered decarboxylation-assisted olefination in the biosynthesis of rhabduscin by a mononuclear non-heme iron enzyme ( P.IsnB) represents a novel approach in olefin construction. This method is commonly employed in natural product biosynthesis. Herein, we demonstrate that a ferryl intermediate is used for C-H activation at the benzylic position of the substrate. We further establish that P.IsnB reactivity can be switched from olefination to hydroxylation using electron-withdrawing groups appended on the phenyl moiety of the analogues. These experimental observations imply that a pathway involving an initial C-H activation followed by a benzylic carbocation species or by electron transfer coupled ß-scission is likely utilized to complete C═C bond formation.


Assuntos
Alcenos/metabolismo , Ferroproteínas não Heme/metabolismo , Alcenos/química , Biocatálise , Descarboxilação , Estrutura Molecular
3.
Biophys J ; 108(1): 5-9, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25564843

RESUMO

Anodic aluminum oxide substrates with macroscopically aligned homogeneous nanopores of 80 nm in diameter enable two-dimensional, solid-state nuclear magnetic resonance studies of lipid-induced conformational changes of uniformly (15)N-labeled Pf1 coat protein in native-like bilayers. The Pf1 helix tilt angles in bilayers composed of two different lipids are not entirely governed by the membrane thickness but could be rationalized by hydrophobic interactions of lysines at the bilayer interface. The anodic aluminum oxide alignment method is applicable to a broader repertoire of lipids versus bicelle bilayer mimetics currently employed in solid-state nuclear magnetic resonance of oriented samples, thus allowing for elucidation of the role played by lipids in shaping membrane proteins.


Assuntos
Óxido de Alumínio/química , Proteínas de Membrana/química , Nanotubos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Dimiristoilfosfatidilcolina/química , Estudos de Viabilidade , Análise dos Mínimos Quadrados , Bicamadas Lipídicas/química , Microscopia Eletrônica de Varredura , Isótopos de Nitrogênio , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Isótopos de Fósforo , Estrutura Secundária de Proteína
4.
Phys Chem Chem Phys ; 16(38): 20834-43, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25167223

RESUMO

The mechanism of solar water oxidation by photosystem II (PSII) is of fundamental interest and it is the object of extensive studies both in the past and present. The solar water oxidation reaction of PSII occurs in the oxygen-evolving complex (OEC). The OEC consists of a tetranuclear manganese calcium-oxo (Mn4Ca-oxo) cluster that is surrounded by amino acid residues and inorganic cofactors. The role of the Ca(2+) ion in the water oxidation reaction is one of the most interesting questions that is yet to be answered. In this study, we probe the structural and functional differences induced by metal ion substitution in the Mn4Ca-oxo cluster by substituting the Ca(2+) ion in the OEC by a Sr(2+) ion. We apply two-dimensional (2D) hyperfine sublevel correlation (HYSCORE) spectroscopy to detect weak magnetic interactions between the paramagnetic Mn4Sr-oxo cluster and the surrounding protons in the S2 state of the OEC of Sr(2+)-substituted PSII. We identify three groups of protons that are magnetically interacting with the Mn4Sr-oxo cluster. Using the recently reported 1.9 Å resolution X-ray structure of the OEC in the S1 state [Umena et al.] and the high-resolution 2D HYSCORE spectroscopy studies of the S2 state of the OEC of Ca(2+)-containing PSII [Milikisiyants et al., Energy Environ. Sci., 2012, 5, 7747], we discuss the assignments of the three groups of protons that are magnetically coupled to the Mn4Sr-oxo cluster. Since hyperfine interactions are highly sensitive to small perturbations in the electronic and geometric structure of paramagnetic centers, a comparison of the 2D HYSCORE spectra of Sr(2+)-substituted and Ca(2+)-containing PSII allows us to draw important conclusions with respect to the structure of the substrate water molecules in the OEC and the role of the Ca(2+) ion in the water oxidation reaction. In addition, for the first time, we determine the experimental value of the spin projection factor for the Mn(III) ion of the Mn4Ca-oxo cluster as ρ1 = ±1.7 from the assignment of the hyperfine interaction of the paramagnetic cluster with the protons of the D1-His332 residue of PSII.


Assuntos
Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/efeitos da radiação , Energia Solar , Estrôncio/química , Estrôncio/efeitos da radiação , Água/química , Luz , Teste de Materiais
5.
J Magn Reson ; 362: 107677, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631171

RESUMO

One of the most essential prerequisites for the development of pulse Dynamic Nuclear Polarization (DNP) is the ability to generate high-power coherent mm-wave pulses at the electron precession frequencies corresponding to the magnetic fields of modern high-resolution NMR spectrometers. As a major step towards achieving this goal, an Extended Interaction Klystron (EIK) pulse amplifier custom-built by the Communications and Power Industries, Inc. and producing up to 140 W at 197.8 GHz, was integrated with in-house built NMR/DNP/EPR spectrometer operating at 7 T magnetic field. The spectrometer employs a Thomas Keating, Ltd. quasioptical bridge to direct mm-waves into a homebuilt DNP probe incorporating photonic bandgap (PBG) resonators to further boost electronic B1e fields. Three-pulse electron spin echo nutation experiments were employed to characterize the B1e fields at the sample by operating the homodyne 198 GHz bridge in an induction mode. Room-temperature experiments with a single-crystal high-pressure, high-temperature (HPHT) diamond and a polystyrene film doped with BDPA radical yielded < 9 ns π/2 pulses at ca. 50 W specified EIK output at the corresponding resonance frequencies and the PBG resonator quality factor of Q≈300. DNP experiments carried out in a "gated" mode by supplying 20 µs mm-wave pulses every 1 ms yielded 13C solid-effect DNP with gains up to 20 for the polystyrene-BDPA sample at natural 13C abundance. For a single-crystal HPHT diamond, the gated DNP mode yielded almost the same 13C enhancement as a low-power continuous wave (CW) mode at 0.4 W, whereas no DNP effect was observed for the BDPA/polystyrene sample in the latter case. To illustrate the versatility of our upgraded DNP spectrometer, room-temperature Overhauser DNP enhancements of 7-14 for 31P NMR signal were demonstrated using a liquid droplet of 1 M tri-phenyl phosphine co-dissolved with 100 mM of BDPA in toluene­d8.

6.
Biochemistry ; 52(28): 4781-90, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23773007

RESUMO

The solar water-splitting protein complex, photosystem II, catalyzes one of the most energetically demanding reactions in Nature by using light energy to drive the catalytic oxidation of water. Photosystem II contains two symmetrically placed tyrosine residues, YD and YZ, one on each subunit of the heterodimeric core. The YZ residue is kinetically competent and is proposed to be directly involved in the proton-coupled electron transfer reactions of water oxidation. In contrast, the YD proton-coupled electron transfer redox poises the catalytic tetranuclear manganese cluster and may electrostatically tune the adjacent monomeric redox-active chlorophyll and ß-carotene in the secondary electron transfer pathway of photosystem II. In this study, we apply pulsed high-frequency electron paramagnetic resonance (EPR) and electron nuclear double-resonance (ENDOR) spectroscopy to study the photochemical proton-coupled electron transfer (PCET) intermediates of YD. We detect the "unrelaxed" and "relaxed" photoinduced PCET intermediates of YD using high-frequency EPR spectroscopy and observe an increase of the g anisotropy upon temperature-induced relaxation of the unrelaxed intermediate to the relaxed state as previously observed by Faller et al. [(2002) Biochemistry 41, 12914-12920; (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 8732-8735]. This observation suggests the presence of structural differences between the two intermediates. We probe the possible structural differences by performing high-frequency (2)H ENDOR spectroscopy experiments. On the basis of numerical simulations of the experimental (2)H ENDOR spectra, we confirm that (i) there is a significant change in the H-bond length of the tyrosyl radical in the unrelaxed (1.49 Å) and relaxed (1.75 Å) PCET intermediates. This observation suggests that the D2-His189 residue is deprotonated prior to electron transfer at the YD residue and (ii) there are negligible changes in the conformation of the tyrosyl ring in the unrelaxed and relaxed PCET intermediates of YD.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Complexo de Proteína do Fotossistema II/química , Prótons , Tirosina/química , Ligação de Hidrogênio , Conformação Proteica , Synechococcus/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-37387792

RESUMO

High-temperature annealing is a promising but still mainly unexplored method for enhancing spin properties of negatively charged nitrogen-vacancy (NV) centers in diamond particles. After high-energy irradiation, the formation of NV centers in diamond particles is typically accomplished via annealing at temperatures in the range of 800-900 °C for 1-2 h to promote vacancy diffusion. Here, we investigate the effects of conventional annealing (900 °C for 2 h) against annealing at a much higher temperature of 1600 °C for the same annealing duration for particles ranging in size from 100 nm to 15 µm using electron paramagnetic resonance and optical characterization. At this high temperature, the vacancy-assisted diffusion of nitrogen can occur. Previously, the annealing of diamond particles at this temperature was performed over short time scales because of concerns of particle graphitization. Our results demonstrate that particles that survive this prolonged 1600 °C annealing show increased NV T1 and T2 electron spin relaxation times in 1 and 15 µm particles, due to the removal of fast relaxing spins. Additionally, this high-temperature annealing also boosts magnetically induced fluorescence contrast of NV centers for particle sizes ranging from 100 nm to 15 µm. At the same time, the content of NV centers is decreased fewfold and reaches a level of <0.5 ppm. The results provide guidance for future studies and the optimization of high-temperature annealing of fluorescent diamond particles for applications relying on the spin properties of NV centers in the host crystals.

8.
Phys Chem Chem Phys ; 14(19): 7090-7, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22491172

RESUMO

We use two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy to investigate the coordination geometry of the nitrogen ligands of biomimetic models of the oxygen-evolving complex of photosystem II. In the 2D HYSCORE spectroscopy study, [(bpy)2Mn(III)(µ-O)2Mn(IV)(bpy)2](ClO4)3 (bpy, 2,2'-bipyridine) (1) and [H2O(terpy)Mn(III)(µ-O)2Mn(IV)(terpy)OH2](NO3)3 (terpy = 2,2':6',2″-terpyridine) (2) exhibit electron-nuclear hyperfine interactions that depend on both the oxidation state of the manganese ion and the geometry of the nitrogen ligand. We observe four types of (14)N hyperfine interactions corresponding to the Mn(iii) and Mn(iv) ion of each mixed-valence complex and the equatorial and axial geometry of the ligand, respectively. The strongest and the weakest hyperfine interactions arise from the axial and equatorial ligands of the Mn(iii) ion, respectively. The hyperfine interactions of intermediate strength are due to the axial and equatorial ligands of the Mn(iv) ion. Based on the results of this study, we assign the location and ligand geometry of the Mn(iii) ion of the tetranuclear manganese-calcium-oxo cluster in the S2 state of photosystem II.


Assuntos
Compostos de Manganês/química , Mimetismo Molecular , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Análise Espectral/métodos , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes
9.
Biochemistry ; 50(4): 491-501, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21158481

RESUMO

Quinones are naturally occurring isoprenoids that are widely exploited by photosynthetic reaction centers. Protein interactions modify the properties of quinones such that similar quinone species can perform diverse functions in reaction centers. Both type I and type II (oxygenic and nonoxygenic, respectively) reaction centers contain quinone cofactors that serve very different functions as the redox potential of similar quinones can operate at up to 800 mV lower reduction potential when present in type I reaction centers. However, the factors that determine quinone function in energy transduction remain unclear. It is thought that the location of the quinone cofactor, the geometry of its binding site, and the "smart" matrix effects from the surrounding protein environment greatly influence the functional properties of quinones. Photosystem II offers a unique system for the investigation of the factors that influence quinone function in energy transduction. It contains identical plastoquinones in the primary and secondary quinone acceptor sites, Q(A) and Q(B), which exhibit very different functional properties. This study is focused on elucidating the tuning and control of the primary semiquinone state, Q(A)(-), of photosystem II. We utilize high-resolution two-dimensional hyperfine sublevel correlation spectroscopy to directly probe the strength and orientation of the hydrogen bonds of the Q(A)(-) state with the surrounding protein environment of photosystem II. We observe two asymmetric hydrogen bonding interactions of reduced Q(A)(-) in which the strength of each hydrogen bond is affected by the relative nonplanarity of the bond. This study confirms the importance of hydrogen bonds in the redox tuning of the primary semiquinone state of photosystem II.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Complexo de Proteína do Fotossistema II/química , Plastoquinona/química , Benzoquinonas/química , Benzoquinonas/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Nitrogênio , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo , Prótons , Spinacia oleracea
10.
Biochemistry ; 50(17): 3495-501, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21476509

RESUMO

The phylloquinones of photosystem I (PS I), A(1A) and A(1B), exist in near-equivalent protein environments but possess distinct thermodynamic and kinetic properties. Although the determinants responsible for the different properties of the phylloquinones are not completely understood, the strength and geometry of hydrogen bond interactions are significant factors in tuning and control of function. This study focuses on characterizing the hydrogen-bonding interactions of the phylloquinone acceptor, A(1A), by (1)H and (14)N HYSCORE spectroscopy. Photoaccumulation of PS I complexes at pH 8.0 results in the trapping of the phyllosemiquinone anion, A(1A)(-), on the A-branch of cofactors. The experiments described here indicate that A(1A)(-) forms a single H-bond. Using a simple point dipole approximation, we estimate its length to be 1.6 ± 0.1 Å. The value of the (1)H isotropic hyperfine coupling constant suggests that the H-bond has significant out-of-plane character. The (14)N HYSCORE spectroscopy experiments support the assignment of a H-bond wherein, the (14)N quadrupolar coupling constant is consistent with a backbone amide nitrogen as the hydrogen bond donor.


Assuntos
Benzoquinonas/química , Modelos Moleculares , Complexo de Proteína do Fotossistema I/química , Vitamina K 1/análogos & derivados , Vitamina K 1/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Oxirredução
11.
J Magn Reson ; 323: 106893, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418455

RESUMO

Polarization of nuclear spins via Dynamic Nuclear Polarization (DNP) relies on generating sufficiently high mm-wave B1e fields over the sample, which could be achieved by developing suitable resonance structures. Recently, we have introduced one-dimensional photonic band gap (1D PBG) resonators for DNP and reported on prototype devices operating at ca. 200 GHz electron resonance frequency. Here we systematically compare the performance of five (5) PBG resonators constructed from various alternating dielectric layers by monitoring the DNP effect on natural-abundance 13C spins in synthetic diamond microparticles embedded into a commercial polyester-based lapping film of just 3 mil (76 µm) thickness. An odd-numbered configuration of dielectric layers for 1D PBG resonator was introduced to achieve further B1e enhancements. Among the PBG configurations tested, combinations of high-ε perovskite LiTaO3 together with AlN as well as AlN with optical quartz wafers have resulted in ca. 40 to over 50- fold gains in the average mm-wave power over the sample vs. the mirror-only configuration. The results are rationalized in terms of the electromagnetic energy distribution inside the resonators obtained analytically and from COMSOL simulations. It was found that average of B1e2 over the sample strongly depends on the arrangement of the dielectric layers that are the closest to the sample, which favors odd-numbered PBG resonator configurations for their use in DNP.

12.
J Phys Chem B ; 125(1): 36-48, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356277

RESUMO

The primary electron donor P700 of the photosystem I (PSI) is a heterodimer consisting of two chlorophyll molecules. A series of electron-transfer events immediately following the initial light excitation leads to a stabilization of the positive charge by its cation radical form, P700+•. The electronic structure of P700+• and, in particular, its asymmetry with respect to the two chlorophyll monomers is of fundamental interest and is not fully understood up to this date. Here, we apply multifrequency X- (9 GHz) and Q-band (35 GHz) hyperfine sublevel correlation (HYSCORE) spectroscopy to investigate the electron spin density distribution in the cation radical P700+• of PSI from a thermophilic cyanobacterium Thermosynechococcus elongatus. Six 14N and two 1H distinct nuclei have been resolved in the HYSCORE spectra and parameters of the corresponding nuclear hyperfine and quadrupolar hyperfine interactions were obtained by combining the analysis of HYSCORE spectral features with direct numerical simulations. Based on a close similarity of the nuclear quadrupole tensor parameters, all of the resolved 14N nuclei were assigned to six out of total eight available pyrrole ring nitrogen atoms (i.e., four in each of the chlorophylls), providing direct evidence of spin density delocalization over the both monomers in the heterodimer. Using the obtained experimental values of the 14N electron-nuclear hyperfine interaction parameters, the upper limit of the electron spin density asymmetry parameter is estimated as RA/Bupper = 7.7 ± 0.5, while a tentative assignment of 14N observed in the HYSCORE spectra yields RB/A = 3.1 ± 0.5.


Assuntos
Elétrons , Complexo de Proteína do Fotossistema I , Clorofila , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Eletrônica
13.
Cell Rep Phys Sci ; 2(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34888535

RESUMO

SNAP-25 (synaptosomal-associated protein of 25 kDa) is a prototypical intrinsically disordered protein (IDP) that is unstructured by itself but forms coiled-coil helices in the SNARE complex. With high conformational heterogeneity, detailed structural dynamics of unbound SNAP-25 remain elusive. Here, we report an integrative method to probe the structural dynamics of SNAP-25 by combining replica-exchange discrete molecular dynamics (rxDMD) simulations and label-based experiments at ensemble and single-molecule levels. The rxDMD simulations systematically characterize the coil-to-molten globular transition and reconstruct structural ensemble consistent with prior ensemble experiments. Label-based experiments using Förster resonance energy transfer and double electron-electron resonance further probe the conformational dynamics of SNAP-25. Agreements between simulations and experiments under both ensemble and single-molecule conditions allow us to assign specific helix-coil transitions in SNAP-25 that occur in submillisecond timescales and potentially play a vital role in forming the SNARE complex. We expect that this integrative approach may help further our understanding of IDPs.

14.
J Magn Reson ; 298: 115-126, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544015

RESUMO

Over the past decades pulsed electron-electron double resonance (PELDOR), often called double electron-electron resonance (DEER), became one of the major spectroscopic tools for measurements of nanometer-scale distances and distance distributions in non-crystalline biological and chemical systems. The method is based on detecting the amplitude of the primary (3-pulse DEER) or refocused (4-pulse DEER) spin echo for the so-called "observer" spins when the other spins coupled to the former by a dipolar interaction are flipped by a "pump" pulse at another EPR frequency. While the timing of the pump pulse is varied in steps, the positions of the observer pulses are typically fixed. For such a detection scheme the total length of the observer pulse train and the electron spin memory time determine the amplitude of the detected echo signal. Usually, the distance range considerations in DEER experiments dictate the total length of the observer pulse train to exceed the phase memory time by a factor of few and this leads to a dramatic loss of the signal-to-noise ratio (SNR). While the acquisition of the DEER signal seems to be irrational under such conditions, it is currently the preferred way to conduct DEER because of an effective filtering out of all other unwanted interactions. Here we propose a novel albeit simple approach to improve DEER sensitivity and decrease data acquisition time by introducing the signal acquisition scheme based on RELaxation Optimized Acquisition (Length) Distribution (DEER-RELOAD). In DEER-RELOAD the dipolar phase evolution signal is acquired in multiple segments in which the observer pulses are fixed at the positions to optimize SNR just for that specific segment. The length of the segment is chosen to maximize the signal acquisition efficiency according the phase relaxation properties of the spin system. The total DEER trace is then obtained by "stitching" the multiple segments into a one continuous trace. The utility of the DEER-RELOAD acquisition scheme has been demonstrated on an example of the standard 4-pulse DEER sequence applied to two membrane protein complexes labeled with nitroxides. While theoretical gains from the DEER-RELOAD scheme increase with the number of stitched segments, in practice, even dividing the acquisition of the DEER trace into two segments may improve SNR by a factor of >3, as it has been demonstrated for one of these two membrane proteins.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Gramicidina/química , Rodopsina/química , Algoritmos , Leptospira , Modelos Químicos , Modelos Moleculares , Sensibilidade e Especificidade , Razão Sinal-Ruído , Marcadores de Spin
15.
J Magn Reson ; 296: 152-164, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268940

RESUMO

High-field EPR provides significant advantages for studying structure and dynamics of molecular systems possessing an unpaired electronic spin. However, routine use of high-field EPR in biophysical research, especially for aqueous biological samples, is still facing substantial technical difficulties stemming from high dielectric millimeter wave (mmW) losses associated with non-resonant absorption by water and other polar molecules. The strong absorbance of mmW's by water also limits the penetration depth to just fractions of mm or even less, thus making fabrication of suitable sample containers rather challenging. Here we describe a radically new line of high Q-factor mmW resonators that are based on forming lattice defects in one-dimensional photonic band-gap (PBG) structures composed of low-loss ceramic discs of λ/4 in thickness and having alternating dielectric constants. A sample (either liquid or solid) is placed within the E = 0 node of the standing mm wave confined within the defect. A resonator prototype has been built and tested at 94.3 GHz. The resonator performance is enhanced by employing ceramic nanoporous membranes as flat sample holders of controllable thickness and tunable effective dielectric constant. The experimental Q-factor of an empty resonator was  ≈ 420. The Q-factor decreased slightly to  ≈ 370 when loaded with a water-containing nanoporous disc of 50 µm in thickness. The resonator has been tested with a number of liquid biological samples and demonstrated about tenfold gain in concentration sensitivity vs. a high-Q cylindrical TE012-type cavity. Detailed HFSS Ansys simulations have shown that the resonator structure could be further optimized by properly choosing the thickness of the aqueous sample and employing metallized surfaces. The PBG resonator design is readily scalable to higher mmW frequencies and is capable of accommodating significantly larger sample volumes than previously achieved with either Fabry-Perot or cylindrical resonators.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Algoritmos , Cerâmica/química , Campos Eletromagnéticos , Desenho de Equipamento , Gadolínio/química , Gramicidina/química , Bicamadas Lipídicas/química , Nanoestruturas , Fótons , Porosidade , Ondas de Rádio , Água/química
16.
J Magn Reson ; 293: 9-18, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29800786

RESUMO

EPR pulsed dipolar spectroscopy (PDS) is indispensable for measurements of nm-scale distances between electronic spins in biological and other systems. While several useful modifications and pulse sequences for PDS have been developed in recent years, DEER experiments utilizing pump and observer pulses at two different frequencies remain the most popular for practical applications. One of the major drawbacks of all the available DEER approaches is the presence of a significant unmodulated fraction in the detected signal that arises from an incomplete inversion of the coupled spins by the pump pulse. The latter fraction is perceived as one of the major sources of error for the reconstructed distance distributions. We describe an alternative detection scheme - a Refocused Out-Of-Phase DEER (ROOPh-DEER) - to acquire only the modulated fraction of the dipolar DEER signal. When Zeeman splitting is small compared to the temperature, the out-of-phase magnetization components cancel each other and are not observed in 4-pulse DEER experiment. In ROOPh-DEER these components are refocused by an additional pump pulse while the in-phase component containing an unmodulated background is filtered out by a pulse at the observed frequency applied right at the position of the refocused echo. Experimental implementation of the ROOPh-DEER detection scheme requires at least three additional pulses as was demonstrated on an example of a 7-pulse sequence. The application of 7-pulse ROOPh-DEER sequence to a model biradical yielded the interspin distance of 1.94 ±â€¯0.07 nm identical to the one obtained with the conventional 4-pulse DEER, however, without the unmodulated background present as a dominant fraction in the latter signal.

17.
J Magn Reson ; 297: 113-123, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30380458

RESUMO

The most critical condition for performing Dynamic Nuclear Polarization (DNP) NMR experiments is achieving sufficiently high electronic B1e fields over the sample at the matched EPR frequencies, which for modern high-resolution NMR instruments fall into the millimeter wave (mmW) range. Typically, mmWs are generated by powerful gyrotrons and/or extended interaction klystrons (EIKs) sources and then focused onto the sample by dielectric lenses. However, further development of DNP methods including new DNP pulse sequences may require B1e fields higher than one could achieve with the current mmW technology. In order to address the challenge of significantly enhancing the mmW field at the sample, we have constructed and tested one-dimensional photonic band-gap (PBG) mmW resonator that was incorporated inside a double-tuned radiofrequency (rf) NMR saddle coil. The photonic crystal is formed by stacking ceramic discs with alternating high and low dielectric constants and thicknesses of λ/4 or 3λ/4, where λ is the wavelength of the incident mmW field in the corresponding dielectric material. When the mmW frequency is within the band gap of the photonic crystal, a defect created in the middle of the crystal confines the mmW energy, thus forming a resonant structure. An aluminum mirror in the middle of the defect has been used to substitute one-half of the structure with its mirror image in order to reduce the resonator size and simplify its tuning. The latter is achieved by adjusting the width of the defect by moving the aluminum mirror with respect to the dielectric stack using a gear mechanism. The 1D PBG resonator was the key element for constructing a multi-resonant integrated DNP/NMR probehead operating at 190-199 GHz EPR/300 MHz 1H/75.5 MHz 13C NMR frequencies. Initial tests of the multi-resonant DNP/NMR probehead were carried out using a quasioptical mmW  bridge and a Bruker Biospin Avance II spectrometer equipped with a standard Bruker 7 T wide-bore 89 mm magnet parked at 300.13 MHz 1H NMR frequency. The mmW bridge built with all solid-state active components allows for the frequency tuning between ca. 190 and ca. 199 GHz with the output power up to 27 dBm (0.5 W) at 192 GHz and up to 23 dBm (0.2 W) at 197.5 GHz. Room temperature DNP experiments with a synthetic single crystal high-pressure high-temperature (HPHT) diamond (0.3 × 0.3 × 3.0 mm3) demonstrated dramatic 1500-fold enhancement of 13C natural abundance NMR signal at full incident mmW power. Significant 13C DNP enhancement (of about 90) have been obtained at incident mmW powers of as low as <100 µW. Further tests of the resonator performance have been carried out with a thin (ca. 100 µm thickness) composite polystyrene-microdiamond film by controlling the average mmW power at the optimal DNP conditions via a gated mode of operation. From these experiments, the PBG resonator with loaded Q ≃ 250 and finesse F≈75 provides up to 12-fold or 11 db gain in the average mmW power vs. the non-resonant probehead configuration employing only a reflective mirror.

18.
J Mol Biol ; 429(12): 1903-1920, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28501588

RESUMO

Oligomerization of membrane proteins is common in nature. Here, we combine spin-labeling double electron-electron resonance (DEER) and solid-state NMR (ssNMR) spectroscopy to refine the structure of an oligomeric integral membrane protein, Anabaena sensory rhodopsin (ASR), reconstituted in a lipid environment. An essential feature of such a combined approach is that it provides structural distance restraints spanning a range of ca 3-60Å while using the same sample preparation (i.e., mutations, paramagnetic labeling, and reconstitution in lipid bilayers) for both ssNMR and DEER. Direct modeling of the multispin effects on DEER signal allowed for the determination of the oligomeric order and for obtaining long-range DEER distance restraints between the ASR trimer subunits that were used to refine the ssNMR structure of ASR. The improved structure of the ASR trimer revealed a more compact packing of helices and side chains at the intermonomer interface, compared to the structure determined using the ssNMR data alone. The extent of the refinement is significant when compared with typical helix movements observed for the active states of homologous proteins. Our combined approach of using complementary DEER and NMR measurements for the determination of oligomeric structures would be widely applicable to membrane proteins where paramagnetic tags can be introduced. Such a method could be used to study the effects of the lipid membrane composition on protein oligomerization and to observe structural changes in protein oligomers upon drug, substrate, and co-factor binding.


Assuntos
Anabaena/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica , Rodopsinas Sensoriais/química , Rodopsinas Sensoriais/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares
19.
J Phys Chem B ; 119(15): 4905-16, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25731604

RESUMO

The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the most energetically demanding reactions in Nature by using light energy to drive a catalyst capable of oxidizing water. The water oxidation reaction takes place at the tetra-nuclear manganese calcium-oxo (Mn4Ca-oxo) cluster at the heart of the oxygen-evolving complex (OEC) of PSII. Previous studies have determined the magnetic interactions between the paramagnetic Mn4Ca-oxo cluster and its environment in the S2 state of the OEC. The assignments for the electron-nuclear magnetic interactions that were observed in these studies were facilitated by the use of synthetic dimanganese di-µ-oxo complexes. However, there is an immense need to understand the effects of the protein environment on the coordination geometry of the Mn4Ca-oxo cluster in the OEC of PSII. In the present study, we use a proteinaceous model system to examine the protein ligands that are coordinated to the dimanganese catalytic center of manganese catalase from Lactobacillus plantarum. We utilize two-dimensional hyperfine sublevel correlation (2D HYSCORE) spectroscopy to detect the weak magnetic interactions of the paramagnetic dinuclear manganese catalytic center of superoxidized manganese catalase with the nitrogen and proton atoms of the surrounding protein environment. We obtain a complete set of hyperfine interaction parameters for the protons of a water molecule that is directly coordinated to the dinuclear manganese center. We also obtain a complete set of hyperfine and quadrupolar interaction parameters for two histidine ligands as well as a coordinated azide ligand, in azide-treated superoxidized manganese catalase. On the basis of the values of the hyperfine interaction parameters of the dimanganese model, manganese catalase, and those of the S2 state of the OEC of PSII, for the first time, we discuss the impact of a proteinaceous environment on the coordination geometry of multinuclear manganese clusters.


Assuntos
Catalase/química , Complexo de Proteína do Fotossistema II/química , Superóxidos/química , Azidas/química , Lactobacillus plantarum , Fenômenos Magnéticos , Modelos Químicos , Nitrogênio/química , Prótons , Análise Espectral , Água/química
20.
J Phys Chem B ; 119(32): 10180-90, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26230514

RESUMO

Dynamic nuclear polarization (DNP) enhances the signal in solid-state NMR of proteins by transferring polarization from electronic spins to the nuclear spins of interest. Typically, both the protein and an exogenous source of electronic spins, such as a biradical, are either codissolved or suspended and then frozen in a glycerol/water glassy matrix to achieve a homogeneous distribution. While the use of such a matrix protects the protein upon freezing, it also reduces the available sample volume (by ca. a factor of 4 in our experiments) and causes proportional NMR signal loss. Here we demonstrate an alternative approach that does not rely on dispersing the DNP agent in a glassy matrix. We synthesize a new biradical, ToSMTSL, which is based on the known DNP agent TOTAPOL, but also contains a thiol-specific methanethiosulfonate group to allow for incorporating this biradical into a protein in a site-directed manner. ToSMTSL was characterized by EPR and tested for DNP of a heptahelical transmembrane protein, Anabaena sensory rhodopsin (ASR), by covalent modification of solvent-exposed cysteine residues in two (15)N-labeled ASR mutants. DNP enhancements were measured at 400 MHz/263 GHz NMR/EPR frequencies for a series of samples prepared in deuterated and protonated buffers and with varied biradical/protein ratios. While the maximum DNP enhancement of 15 obtained in these samples is comparable to that observed for an ASR sample cosuspended with ~17 mM TOTAPOL in a glycerol-d8/D2O/H2O matrix, the achievable sensitivity would be 4-fold greater due to the gain in the filling factor. We anticipate that the DNP enhancements could be further improved by optimizing the biradical structure. The use of covalently attached biradicals would broaden the applicability of DNP NMR to structural studies of proteins.


Assuntos
Óxidos N-Cíclicos/química , Cisteína/química , Mesilatos/química , Óxidos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos , Rodopsinas Sensoriais/química , Anabaena , Óxidos N-Cíclicos/síntese química , Glicerol/química , Mesilatos/síntese química , Estrutura Molecular , Mutação , Isótopos de Nitrogênio/química , Óxidos de Nitrogênio/síntese química , Propanóis/química , Prótons , Rodopsinas Sensoriais/genética , Solventes/química , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA