Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042808

RESUMO

Obtaining carbon isotopic information for organic carbon from Martian sediments has long been a goal of planetary science, as it has the potential to elucidate the origin of such carbon and aspects of Martian carbon cycling. Carbon isotopic values (δ13CVPDB) of the methane released during pyrolysis of 24 powder samples at Gale crater, Mars, show a high degree of variation (-137 ± 8‰ to +22 ± 10‰) when measured by the tunable laser spectrometer portion of the Sample Analysis at Mars instrument suite during evolved gas analysis. Included in these data are 10 measured δ13C values less than -70‰ found for six different sampling locations, all potentially associated with a possible paleosurface. There are multiple plausible explanations for the anomalously depleted 13C observed in evolved methane, but no single explanation can be accepted without further research. Three possible explanations are the photolysis of biological methane released from the subsurface, photoreduction of atmospheric CO2, and deposition of cosmic dust during passage through a galactic molecular cloud. All three of these scenarios are unconventional, unlike processes common on Earth.

2.
Astrobiology ; 24(1): 114-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227837

RESUMO

The 2-week, virtual Future of the Search for Life science and engineering workshop brought together more than 100 scientists, engineers, and technologists in March and April 2022 to provide their expert opinion on the interconnections between life-detection science and technology. Participants identified the advances in measurement and sampling technologies they believed to be necessary to perform in situ searches for life elsewhere in our Solar System, 20 years or more in the future. Among suggested measurements for these searches, those pertaining to three potential indicators of life termed "dynamic disequilibrium," "catalysis," and "informational polymers" were identified as particularly promising avenues for further exploration. For these three indicators, small breakout groups of participants identified measurement needs and knowledge gaps, along with corresponding constraints on sample handling (acquisition and processing) approaches for a variety of environments on Enceladus, Europa, Mars, and Titan. Despite the diversity of these environments, sample processing approaches all tend to be more complex than those that have been implemented on missions or envisioned for mission concepts to date. The approaches considered by workshop breakout groups progress from nondestructive to destructive measurement techniques, and most involve the need for fluid (especially liquid) sample processing. Sample processing needs were identified as technology gaps. These gaps include technology and associated sampling strategies that allow the preservation of the thermal, mechanical, and chemical integrity of the samples upon acquisition; and to optimize the sample information obtained by operating suites of instruments on common samples. Crucially, the interplay between science-driven life-detection strategies and their technological implementation highlights the need for an unprecedented level of payload integration and extensive collaboration between scientists and engineers, starting from concept formulation through mission deployment of life-detection instruments and sample processing systems.


Assuntos
Júpiter , Marte , Saturno , Humanos , Meio Ambiente Extraterreno , Exobiologia/métodos
3.
J Geophys Res Planets ; 128(1): e2022JE007185, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37034460

RESUMO

The Mars Science Laboratory rover, Curiosity, explored the clay mineral-bearing Glen Torridon region for 1 Martian year between January 2019 and January 2021, including a short campaign onto the Greenheugh pediment. The Glen Torridon campaign sought to characterize the geology of the area, seek evidence of habitable environments, and document the onset of a potentially global climatic transition during the Hesperian era. Curiosity roved 5 km in total throughout Glen Torridon, from the Vera Rubin ridge to the northern margin of the Greenheugh pediment. Curiosity acquired samples from 11 drill holes during this campaign and conducted the first Martian thermochemolytic-based organics detection experiment with the Sample Analysis at Mars instrument suite. The lowest elevations within Glen Torridon represent a continuation of lacustrine Murray formation deposits, but overlying widespread cross bedded sandstones indicate an interval of more energetic fluvial environments and prompted the definition of a new stratigraphic formation in the Mount Sharp group called the Carolyn Shoemaker formation. Glen Torridon hosts abundant phyllosilicates yet remains compositionally and mineralogically comparable to the rest of the Mount Sharp group. Glen Torridon samples have a great diversity and abundance of sulfur-bearing organic molecules, which are consistent with the presence of ancient refractory organic matter. The Glen Torridon region experienced heterogeneous diagenesis, with the most striking alteration occurring just below the Siccar Point unconformity at the Greenheugh pediment. Results from the pediment campaign show that the capping sandstone formed within the Stimson Hesperian aeolian sand sea that experienced seasonal variations in wind direction.

4.
Nat Commun ; 14(1): 808, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810853

RESUMO

Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Exobiologia/métodos , Fósseis , Limite de Detecção , Filogenia
5.
Astrobiology ; 21(1): 60-82, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33121252

RESUMO

Hydrothermal spring deposits host unique microbial ecosystems and have the capacity to preserve microbial communities as biosignatures within siliceous sinter layers. This quality makes terrestrial hot springs appealing natural laboratories to study the preservation of both organic and morphologic biosignatures. The discovery of hydrothermal deposits on Mars has called attention to these hot springs as Mars-analog environments, driving forward the study of biosignature preservation in these settings to help prepare future missions targeting the recovery of biosignatures from martian hot-spring deposits. This study quantifies the fatty acid load in three Icelandic hot-spring deposits ranging from modern and inactive to relict. Samples were collected from both the surface and 2-18 cm in depth to approximate the drilling capabilities of current and upcoming Mars rovers. To determine the preservation potential of organics in siliceous sinter deposits, fatty acid analyses were performed with pyrolysis-gas chromatography-mass spectrometry (GC-MS) utilizing thermochemolysis with tetramethylammonium hydroxide (TMAH). This technique is available on both current and upcoming Mars rovers. Results reveal that fatty acids are often degraded in the subsurface relative to surface samples but are preserved and detectable with the TMAH pyrolysis-GC-MS method. Hot-spring mid-to-distal aprons are often the best texturally and geomorphically definable feature in older, degraded terrestrial sinter systems and are therefore most readily detectable on Mars from orbital images. These findings have implications for the detection of organics in martian hydrothermal systems as they suggest that organics might be detectable on Mars in relatively recent hot-spring deposits, but preservation likely deteriorates over geological timescales. Rovers with thermochemolysis pyrolysis-GC-MS instrumentation may be able to detect fatty acids in hot-spring deposits if the organics are relatively young; therefore, martian landing site and sample selection are of paramount importance in the search for organics on Mars.


Assuntos
Fontes Termais , Marte , Ecossistema , Exobiologia , Meio Ambiente Extraterreno , Ácidos Graxos , Islândia
6.
Astrobiology ; 21(9): 1137-1156, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34534003

RESUMO

N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA), mixed with the solvent N,N-dimethylformamide (DMF), is used as a derivatizing reagent by the Sample Analysis at Mars (SAM) experiment onboard NASA's Curiosity rover and will soon be utilized by the Mars Organic Molecule Analyzer experiment onboard the ESA/Roscosmos Rosalind Franklin rover. The pyrolysis products of MTBSTFA, DMF, and the MTBSTFA/DMF mixtures, obtained at different temperatures, were analyzed. Two different pyrolysis modes were studied, flash pyrolysis and ramp pyrolysis (35°C/min), to evaluate the potential influence of the sample heating speed on the production of products in space chromatographs. The effect of the presence of calcium perchlorate on the pyrolysis products of MTBSTFA/DMF was also studied to ascertain the potential effect of perchlorate species known to be present at the martian surface. The results show that MTBSTFA/DMF derivatization should be applied below 300°C when using flash pyrolysis, as numerous products of MTBSTFA/DMF were formed at high pyrolysis temperatures. However, when an SAM-like ramp pyrolysis was applied, the final pyrolysis temperature did not appear to influence the degradation products of MTBSTFA/DMF. All products of MTBSTFA/DMF pyrolysis are listed in this article, providing a major database of products for the analysis of martian analog samples, meteorites, and the in situ analysis of martian rocks and soils. In addition, the presence of calcium perchlorate does not show any obvious effects on the pyrolysis of MTBSTFA/DMF: Only chloromethane and TBDMS-Cl (chloro-tertbutyldimethylsilane) were detected, whereas chlorobenzene and other chlorine-bearing compounds were not detected. However, other chlorine-bearing compounds were detected after pyrolysis of the Murchison meteorite in the presence of calcium perchlorate. This result reinforces previous suggestions that chloride-bearing compounds could be reaction products of martian samples and perchlorate.


Assuntos
Meio Ambiente Extraterreno , Marte , Cálcio , Dimetilformamida , Cromatografia Gasosa-Espectrometria de Massas , Percloratos
7.
Astrobiology ; 21(3): 279-297, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33306917

RESUMO

The Mars Organic Molecule Analyzer (MOMA) and Sample Analysis at Mars (SAM) instruments onboard the Exomars 2022 and Mars Science Laboratory rovers, respectively, are capable of organic matter detection and differentiating potentially biogenic from abiotic organics in martian samples. To identify organics, both these instruments utilize pyrolysis-gas chromatography coupled to mass spectrometry, and the thermochemolysis agent tetramethylammonium hydroxide (TMAH) is also used to increase organic volatility. However, the reactivity and efficiency of TMAH thermochemolysis are affected by the presence of calcium perchlorate on the martian surface. In this study, we determined the products of TMAH pyrolysis in the presence and absence of calcium perchlorate at different heating rates (flash pyrolysis and SAM-like ramp pyrolysis with a 35°C·min-1 heating rate). The decomposition mechanism of TMAH pyrolysis in the presence of calcium perchlorate was studied by using stepped pyrolysis. Moreover, the effect of calcium perchlorate (at Mars-relevant concentrations) on the recovery rate of fatty acids with TMAH thermochemolysis was studied. Results demonstrate that flash pyrolysis yields more diversity and greater abundances of TMAH thermochemolysis products than does the SAM-like ramp pyrolysis method. There is no obvious effect of calcium perchlorate on TMAH degradation when the [ClO4-] is lower than 10 weight percent (wt %). Most importantly, the presence of calcium perchlorate does not significantly impact the recovery rate of fatty acids with TMAH thermochemolysis under laboratory conditions, which is promising for the detection of fatty acids via TMAH thermochemolysis with the SAM and MOMA instruments on Mars.


Assuntos
Marte , Percloratos , Cálcio , Meio Ambiente Extraterreno , Cromatografia Gasosa-Espectrometria de Massas , Compostos de Amônio Quaternário
8.
Geobiology ; 18(5): 619-640, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32336004

RESUMO

Digitate siliceous hot spring deposits are a form of biomediated sinter that is relatively common in the Taupo Volcanic Zone (TVZ), New Zealand, and elsewhere on Earth. Such deposits have gained prominence recently because of their morphological similarity to opaline silica rocks of likely hot spring origin found by the Spirit rover on Mars and the consequent implications for potential biosignatures there. Here, we investigate the possible relationship between microbial community composition and morphological diversity among digitate structures from actively forming siliceous hot spring sinters depositing subaerially in shallow discharge channels and around pool rims at several physicochemically distinct geothermal fields in the TVZ. The TVZ digitate sinters range in morphologic subtype from knobby to spicular, and are shown to be microstromatolites that grow under varied pH ranges, temperatures, and water chemistries. Scanning electron microscopy and molecular analyses revealed that TVZ digitate sinters are intimately associated with a diverse array of bacterial, archaeal and eukaryotic micro-organisms, and for most digitate structures the diversity and quantity of prokaryotes was higher than that of eukaryotes. However, microbial community composition was not correlated with morphologic subtypes of digitate sinter, and observations provided limited evidence that pH (acidic versus alkali) affects morphology. Instead, results suggest hydrodynamics may be an important factor influencing variations in morphology, while water chemistry, pH, and temperature are strong drivers of microbial composition and diversity.


Assuntos
Fontes Termais , Microbiota , Archaea , Bactérias , Temperatura Alta , Nova Zelândia
9.
Astrobiology ; 20(2): 167-178, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32022603

RESUMO

Sedimentary strata on Mars often contain a mix of sulfates, iron oxides, chlorides, and phyllosilicates, a mineral assemblage that is unique on Earth to acid brine environments. To help characterize the astrobiological potential of depositional environments with similar minerals present, samples from four naturally occurring acidic salt lakes and adjacent mudflats/sandflats in the vicinity of Norseman, Western Australia, were collected and analyzed. Lipid biomarkers were extracted and quantified, revealing biomarkers from vascular plants alongside trace microbial lipids. The resilience of lipids from dead organic material in these acid saline sediments through the pervasive stages of early diagenesis lends support to the idea that sulfates, in tandem with phyllosilicates and iron oxides, could be a viable target for biomarkers on Mars. To fully understand the astrobiological potential of these depositional environments, additional investigations of organic preservation in ancient acidic saline sedimentary environments are needed.


Assuntos
Exobiologia/métodos , Sedimentos Geológicos/química , Marte , Minerais/análise , Biomarcadores/análise , Compostos Férricos/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Lagos/análise , Lagos/química , Lipídeos/análise , Sulfatos/análise , Austrália Ocidental
10.
Astrobiology ; 20(2): 292-306, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31880468

RESUMO

Chromatographic analysis of the Cumberland mudstone in Gale crater by the Sample Analysis at Mars (SAM) instrument revealed the detection of two to three isomers of dichlorobenzene. Their individual concentrations were estimated to be in the 0.5-17 ppbw range relative to the sample mass. We also report the first detection of trichloromethylpropane and the confirmation of the detection of chlorobenzene previously reported. Supporting laboratory experiments excluded the SAM internal background as the source of those compounds, thus confirming the organic carbon and chlorine of the newly detected chlorohydrocarbons are indigenous to the mudstone sample. Laboratory experiments also demonstrated that the chlorohydrocarbons were mainly produced from chemical reactions occurring in the SAM ovens between organic molecules and oxychlorines contained in the sample. The results we obtained show that meteoritic organics and tested chemical species (a polycyclic aromatic hydrocarbon, an amino acid, and a carboxylic acid) were plausible organic precursors of the chlorinated aromatic molecules detected with SAM, thus suggesting that they could be among the organic molecules present in the mudstone. Results from this study coupled with previously reported detections of chlorinated aromatics (<300 ppbw) indigenous to the same mudstone highlight that organics can be preserved from the harsh surface conditions even at shallow depth. The detection of new chlorohydrocarbons with SAM confirms that organic molecules should have been available in an environment favorable to life forms, strengthening the habitability aspect of Gale crater.


Assuntos
Clorobenzenos/análise , Exobiologia/métodos , Sedimentos Geológicos/química , Marte , Propano/análise , Clorobenzenos/química , Cromatografia Gasosa-Espectrometria de Massas , Propano/química , Astronave , Estereoisomerismo
11.
Astrobiology ; 19(4): 522-546, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30869535

RESUMO

The Mars Curiosity rover carries a diverse instrument payload to characterize habitable environments in the sedimentary layers of Aeolis Mons. One of these instruments is Sample Analysis at Mars (SAM), which contains a mass spectrometer that is capable of detecting organic compounds via pyrolysis gas chromatography mass spectrometry (py-GC-MS). To identify polar organic molecules, the SAM instrument carries the thermochemolysis reagent tetramethylammonium hydroxide (TMAH) in methanol (hereafter referred to as TMAH). TMAH can liberate fatty acids bound in macromolecules or chemically bound monomers associated with mineral phases and make these organics detectable via gas chromatography mass spectrometry (GC-MS) by methylation. Fatty acids, a type of carboxylic acid that contains a carboxyl functional group, are of particular interest given their presence in both biotic and abiotic materials. This work represents the first analyses of a suite of Mars-analog samples using the TMAH experiment under select SAM-like conditions. Samples analyzed include iron oxyhydroxides and iron oxyhydroxysulfates, a mixture of iron oxides/oxyhydroxides and clays, iron sulfide, siliceous sinter, carbonates, and shale. The TMAH experiments produced detectable signals under SAM-like pyrolysis conditions when organics were present either at high concentrations or in geologically modern systems. Although only a few analog samples exhibited a high abundance and variety of fatty acid methyl esters (FAMEs), FAMEs were detected in the majority of analog samples tested. When utilized, the TMAH thermochemolysis experiment on SAM could be an opportunity to detect organic molecules bound in macromolecules on Mars. The detection of a FAME profile is of great astrobiological interest, as it could provide information regarding the source of martian organic material detected by SAM.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Ácidos Graxos/análise , Marte , Minerais/química , Compostos de Amônio Quaternário/química , Astronave , Temperatura , Ácidos Carboxílicos/química , Argila/química , Ésteres/análise , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Ferro/química , Metanol/química , Dióxido de Silício/química , Fatores de Tempo
12.
Science ; 360(6393): 1096-1101, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880683

RESUMO

Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover. Diverse pyrolysis products, including thiophenic, aromatic, and aliphatic compounds released at high temperatures (500° to 820°C), were directly detected by evolved gas analysis. Thiophenes were also observed by gas chromatography-mass spectrometry. Their presence suggests that sulfurization aided organic matter preservation. At least 50 nanomoles of organic carbon persists, probably as macromolecules containing 5% carbon as organic sulfur molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA