Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(8): 409, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810394

RESUMO

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding disorders, which result in dysfunction or death of the light-sensing cone and rod photoreceptors. Despite individual IRDs (Inherited retinal disease) being rare, collectively, they affect up to 1:2000 people worldwide, causing a significant socioeconomic burden, especially when cone-mediated central vision is affected. This study uses the Pde6ccpfl1 mouse model of achromatopsia, a cone-specific vision loss IRD (Inherited retinal disease), to investigate the potential gene-independent therapeutic benefits of a histone demethylase inhibitor GSK-J4 on cone cell survival. We investigated the effects of GSK-J4 treatment on cone cell survival in vivo and ex vivo and changes in cone-specific gene expression via single-cell RNA sequencing. A single intravitreal GSK-J4 injection led to transcriptional changes in pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, among other key epigenetic pathways, highlighting the complex interplay between methylation and acetylation in healthy and diseased cones. Furthermore, continuous administration of GSK-J4 in retinal explants increased cone survival. Our results suggest that IRD (Inherited retinal disease)-affected cones respond positively to epigenetic modulation of histones, indicating the potential of this approach in developing a broad class of novel therapies to slow cone degeneration.


Assuntos
Defeitos da Visão Cromática , Distrofia de Cones , Animais , Defeitos da Visão Cromática/metabolismo , Distrofia de Cones/metabolismo , Modelos Animais de Doenças , Histonas/metabolismo , Humanos , Camundongos , Células Fotorreceptoras Retinianas Cones/metabolismo
2.
Front Cell Dev Biol ; 11: 1224078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601102

RESUMO

Elucidation of the cellular changes that occur in degenerating photoreceptors of people with inherited retinal diseases (IRDs) has been a focus for many research teams, leading to numerous theories on how these changes affect the cell death process. What is clearly emerging from these studies is that there are common denominators across multiple models of IRD, regardless of the underlying genetic mutation. These common markers could open avenues for broad neuroprotective therapeutics to prevent photoreceptor loss and preserve functional vision. In recent years, the role of epigenetic modifications contributing to the pathology of IRDs has been a particular point of interest, due to many studies noting changes in these epigenetic modifications, which coincide with photoreceptor cell death. This review will discuss the two broad categories of epigenetic changes, DNA methylation and histone modifications, that have received particular attention in IRD models. We will review the altered epigenetic regulatory events that are believed to contribute to cell death in IRDs and discuss the therapeutic potential of targeting these alterations.

3.
Sci Rep ; 13(1): 21946, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081924

RESUMO

Adeno-associated viral (AAV) vector-mediated retinal gene therapy is an active field of both pre-clinical as well as clinical research. As with other gene therapy clinical targets, novel bioengineered AAV variants developed by directed evolution or rational design to possess unique desirable properties, are entering retinal gene therapy translational programs. However, it is becoming increasingly evident that predictive preclinical models are required to develop and functionally validate these novel AAVs prior to clinical studies. To investigate if, and to what extent, primary retinal explant culture could be used for AAV capsid development, this study performed a large high-throughput screen of 51 existing AAV capsids in primary human retina explants and other models of the human retina. Furthermore, we applied transgene expression-based directed evolution to develop novel capsids for more efficient transduction of primary human retina cells and compared the top variants to the strongest existing benchmarks identified in the screening described above. A direct side-by-side comparison of the newly developed capsids in four different in vitro and ex vivo model systems of the human retina allowed us to identify novel AAV variants capable of high transgene expression in primary human retina cells.


Assuntos
Capsídeo , Retina , Humanos , Capsídeo/metabolismo , Retina/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Terapia Genética , Bioengenharia , Dependovirus/metabolismo , Vetores Genéticos/genética , Transdução Genética
4.
Transl Vis Sci Technol ; 9(9): 28, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32879784

RESUMO

Purpose: To validate the application of a known transgenic mouse line with green fluorescent cones (Chrnb4.EGFP) to study cone photoreceptor biology and function in health and disease. Methods: Chrnb4.EGFP retinas containing GFP+ cones were compared with retinas without the GFP transgene via immunohistochemistry, quantitative real-time polymerase chain reaction, electroretinograms, and flow cytometry. The Chrnb4.EGFP line was backcrossed to the mouse models of cone degeneration, Pde6ccpfl1 and Gnat2cpfl3 , generating the new lines Gnat2.GFP and Pde6c.GFP, which were also studied as described. Results: GFP expression spanned the length of the cone cell in the Chrnb4.EGFP line, as well as in the novel Gnat2.GFP and Pde6c.GFP lines. The effect of GFP expression showed no significant changes to outer nuclear layer cell death, cone-specific gene expression, and immune response activation. A temporal decrease in GFP expression over time was observed, but GFP fluorescence was still detected through flow cytometry as late as 6 months. Furthermore, a functional analysis of photopic and scotopic electroretinogram responses of the Chrnb4 mouse showed no significant difference between GFP- and GFP+ mice, whereas electroretinogram recordings for the Pde6c.GFP and Gnat2.GFP lines matched previous reports from the original lines. Conclusions: This study demonstrates that the Chrnb4.EGFP mouse can be a powerful tool to overcome the limitations of studying cone biology, including the use of this line to study different types of cone degeneration. Translational Relevance: This work validates research tools that could potentially offer more reliable preclinical data in the development of treatments for cone-mediated vision loss conditions, shortening the gap to clinical translation.


Assuntos
Receptores Nicotínicos , Degeneração Retiniana , Animais , Eletrorretinografia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Retina , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA