Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 208(8): 1960-1967, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346964

RESUMO

T lymphocytes or T cells are key components of the vertebrate response to pathogens and cancer. There are two T cell classes based on their TCRs, αß T cells and γδ T cells, and each plays a critical role in immune responses. The squamate reptiles may be unique among the vertebrate lineages by lacking an entire class of T cells, the γδ T cells. In this study, we investigated the basis of the loss of the γδ T cells in squamates. The genome and transcriptome of a sleepy lizard, the skink Tiliqua rugosa, were compared with those of tuatara, Sphenodon punctatus, the last living member of the Rhynchocephalian reptiles. We demonstrate that the lack of TCRγ and TCRδ transcripts in the skink are due to large deletions in the T. rugosa genome. We also show that tuataras are on a growing list of species, including sharks, frogs, birds, alligators, and platypus, that can use an atypical TCRδ that appears to be a chimera of a TCR chain with an Ab-like Ag-binding domain. Tuatara represents the nearest living relative to squamates that retain γδ T cells. The loss of γδTCR in the skink is due to genomic deletions that appear to be conserved in other squamates. The genes encoding the αßTCR chains in the skink do not appear to have increased in complexity to compensate for the loss of γδ T cells.


Assuntos
Genoma , Lagartos , Animais , Lagartos/genética , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos T
2.
Small ; 19(28): e2301383, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36971287

RESUMO

Thermal transport in polymer nanocomposites becomes dependent on the interfacial thermal conductance due to the ultra-high density of the internal interfaces when the polymer and filler domains are intimately mixed at the nanoscale. However, there is a lack of experimental measurements that can link the thermal conductance across the interfaces to the chemistry and bonding between the polymer molecules and the glass surface. Characterizing the thermal properties of amorphous composites are a particular challenge as their low intrinsic thermal conductivity leads to poor measurement sensitivity of the interfacial thermal conductance. To address this issue here, polymers are confined in porous organosilicates with high interfacial densities, stable composite structure, and varying surface chemistries. The thermal conductivities and fracture energies of the composites are measured with frequency dependent time-domain thermoreflectance (TDTR) and thin-film fracture testing, respectively. Effective medium theory (EMT) along with finite element analysis (FEA) is then used to uniquely extract the thermal boundary conductance (TBC) from the measured thermal conductivity of the composites. Changes in TBC are then linked to the hydrogen bonding between the polymer and organosilicate as quantified by Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. This platform for analysis is a new paradigm in the experimental investigation of heat flow across constituent domains.

3.
J Immunol ; 205(3): 637-647, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591403

RESUMO

Atypical TCRδ found in sharks, amphibians, birds, and monotremes and TCRµ found in monotremes and marsupials are TCR chains that use Ig or BCR-like variable domains (VHδ/Vµ) rather than conventional TCR V domains. These unconventional TCR are consistent with a scenario in which TCR and BCR, although having diverged from each other more than 400 million years ago, continue to exchange variable gene segments in generating diversity for Ag recognition. However, the process underlying this exchange and leading to the evolution of these atypical TCR receptor genes remains elusive. In this study, we identified two TCRα/δ gene loci in the Chinese alligator (Alligator sinensis). In total, there were 144 V, 154 Jα, nine Jδ, eight Dδ, two Cα, and five Cδ gene segments in the TCRα/δ loci of the Chinese alligator, representing the most complicated TCRα/δ gene system in both genomic structure and gene content in any tetrapod examined so far. A pool of 32 VHδ genes divided into 18 subfamilies was found to be scattered over the two loci. Phylogenetic analyses revealed that these VHδ genes could be related to bird VHδ genes, VHδ/Vµ genes in platypus or opossum, or alligator VH genes. Based on these findings, a model explaining the evolutionary pattern of atypical TCRδ/TCRµ genes in tetrapods is proposed. This study sheds new light on the evolution of TCR and BCR genes, two of the most essential components of adaptive immunity.


Assuntos
Jacarés e Crocodilos , Evolução Molecular , Loci Gênicos , Receptores de Antígenos de Linfócitos T alfa-beta , Proteínas de Répteis , Jacarés e Crocodilos/genética , Jacarés e Crocodilos/imunologia , Animais , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Proteínas de Répteis/genética , Proteínas de Répteis/imunologia
4.
Reprod Fertil Dev ; 31(7): 1246-1251, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30414624

RESUMO

Marsupials, with short gestation times, have more complex and changing patterns of milk composition than eutherians. Maternal immunoglobulins (Ig) that confer immunity on offspring are among the components that change during marsupial lactation. In the present study we quantified the abundance of mammary transcripts encoding Ig heavy chains and their corresponding transporters in the laboratory opossum Monodelphis domestica. IgA transcripts were the most abundant in opossum mammary and, with IgM, increased in abundance linearly from birth to weaning. Similarly, the Fc receptor for IgA, the poly-Ig receptor, also increased in abundance throughout lactation. There were few transcripts for IgG or IgE within the opossum mammaries. This is in contrast with reports for Australian marsupial species. Transcripts for the Neonatal Fc Receptor (FcRN), which transports IgG, were detected throughout lactation, and opossum milk is known to contain IgG. Therefore, milk IgG is likely to be taken from the maternal circulation, rather than resulting from local production. There is a parallel increase in FcRN in the newborn gut that declines around the time when neonates have matured to the point where they can make their own IgG. These results are consistent with a transfer of maternal Ig that is coordinated with the development of the neonatal immune system.


Assuntos
Imunoglobulina G/análise , Troca Materno-Fetal/fisiologia , Leite/química , Animais , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/imunologia , Lactação , Leite/imunologia , Gambás , Gravidez , Receptores Fc/imunologia
5.
Nano Lett ; 18(8): 4900-4907, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29985626

RESUMO

Ultrathin nanowires with <3 nm diameter have long been sought for novel properties that emerge from dimensional constraint as well as for continued size reduction and performance improvement of nanoelectronic devices. Here, we report on a facile and large-scale synthesis of a new class of electrically conductive ultrathin core-shell nanowires using benzenethiols. Core-shell nanowires are atomically precise and have inorganic five-atom copper-sulfur cross-sectional cores encapsulated by organic shells encompassing aromatic substituents with ring planes oriented parallel. The exact nanowire atomic structures were revealed via a two-pronged approach combining computational methods coupled with experimental synthesis and advanced characterizations. Core-shell nanowires were determined to be indirect bandgap materials with a predicted room-temperature resistivity of ∼120 Ω·m. Nanowire morphology was found to be tunable by changing the interwire interactions imparted by the functional group on the benzenethiol molecular precursors, and the nanowire core diameter was determined by the steric bulkiness of the ligand. These discoveries help define our understanding of the fundamental constituents of atomically well-defined and electrically conductive core-shell nanowires, representing significant advances toward nanowire building blocks for smaller, faster, and more powerful nanoelectronics.

6.
Proc Biol Sci ; 284(1865)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070722

RESUMO

Regulating maternal immunity is necessary for successful human pregnancy. Whether this is needed in mammals with less invasive placentation is subject to debate. Indeed, the short gestation times in marsupials have been hypothesized to be due to a lack of immune regulation during pregnancy. Alternatively, the maternal marsupial immune system may be unstimulated in the absence of a highly invasive placenta. Transcripts encoding pro-inflammatory cytokines were found to be overrepresented in the whole uterine transcriptome at terminal pregnancy in the opossum, Monodelphis domestica To investigate this further, immune gene transcripts were quantified throughout opossum gestation. Transcripts encoding pro-inflammatory cytokines remained relatively low during pre- and peri-attachment pregnancy stages. Levels dramatically increased late in gestation, peaking within 12 h prior to parturition. These results mirror the spike of inflammation seen at eutherian parturition but not at attachment or implantation. Our results are consistent with the role of pro-inflammatory cytokines at parturition being an ancient and conserved birth mechanism in therian mammals.


Assuntos
Citocinas/metabolismo , Imunidade Inata , Monodelphis/imunologia , Parto/imunologia , Prenhez/imunologia , Transcriptoma , Animais , Evolução Biológica , Citocinas/imunologia , Feminino , Mamíferos , Monodelphis/metabolismo , Gravidez
7.
J Anat ; 230(4): 596-600, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28052333

RESUMO

Thymus-dependent lymphocytes (T cells) are a critical cell lineage in the adaptive immune system of all jawed vertebrates. In eutherian mammals the initiation of T cell development takes place prenatally and the offspring of many species are born relatively immuno-competent. Marsupials, in contrast, are born in a comparatively altricial state and with a less well developed immune system. As such, marsupials are valuable models for studying the peri- and postnatal initiation of immune system development in mammals. Previous results supported a lack of prenatal T cell development in a variety of marsupial species. In the gray short-tailed opossum, Monodelphis domestica, however, there was evidence that αßT cells were present on postnatal day 1 and likely initiated development prenatally. Demonstrated here is the presence of CD3ε+ lymphocytes in late-stage embryos at a site in the upper thoracic cavity, the site of an early developing thymus. CD3ε+ cells were evident as early as 48 h prior to parturition. In day 14 embryos, where there is clear organogenesis, CD3ε+ cells were only found at the site of the early thymus, consistent with no extra-thymic sites of T cell development in the opossum. These observations are the first evidence of prenatal T cell lineage commitment in any marsupial.


Assuntos
Monodelphis/embriologia , Linfócitos T , Animais , Animais Recém-Nascidos , Feminino , Monodelphis/anatomia & histologia , Gravidez
8.
BMC Immunol ; 17(1): 43, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825298

RESUMO

BACKGROUND: The Major Histocompatibility Complex (MHC) class I family of genes encode for molecules that have well-conserved structures, but have evolved to perform diverse functions. The availability of the gray, short-tailed opossum, Monodelphis domestica whole genome sequence has allowed for analysis of MHC class I gene content in this marsupial. Utilization of a novel method to search for MHC related domain structures revealed a previously unknown family of MHC class I-related genes. These genes, named UT1-17, are clustered on chromosome 1 in the opossum, unlinked to the MHC region. UT genes are only found in marsupial and monotreme genomes, consistent with being ancient in mammals yet lost in eutherian mammals. This study investigates the expression and polymorphism of the UT loci in the opossum to gain insight into their possible function. RESULTS: Of the 17 opossum UT genes, most have restricted tissue transcription patterns, with the thymus and skin being the most common sites. Full-length structure of 11 UT transcripts revealed genes varying between five and eight exons, typical for class I family members. There were only two alternative splice variants found. The UT genes also have limited polymorphism and little evidence of positive selection. One locus, UT8, was chosen for further analysis due to its conservation amongst marsupials and generic characteristics. UT8 transcription is limited to developing αß thymocytes, and is absent from mature αß T cells in peripheral lymphoid tissues. CONCLUSION: The overall characteristics and features of UT genes including low polymorphism and restricted tissue expression make it likely that the molecules encoded by UT genes perform roles other than antigenic peptide presentation.


Assuntos
Evolução Biológica , Genes MHC Classe I/genética , Antígenos de Histocompatibilidade Classe I , Gambás/imunologia , Especificidade de Órgãos , Animais , Sequência de Bases , Análise por Conglomerados , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Marsupiais/imunologia , Dados de Sequência Molecular , Gambás/genética , Filogenia , Polimorfismo Genético , Ratos
9.
BMC Genomics ; 16: 535, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26194104

RESUMO

BACKGROUND: Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. RESULTS: Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. CONCLUSIONS: We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells.


Assuntos
Evolução Molecular , Genes MHC Classe I , Marsupiais/genética , Monotremados/genética , Sequência de Aminoácidos , Animais , Austrália , Sequência de Bases , Genoma , Humanos , Filogenia
10.
Immunogenetics ; 67(4): 259-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25737310

RESUMO

The gray short-tailed opossum Monodelphis domestica is one of the few marsupial species for which a high quality whole genome sequence is available and the major histocompatibility complex (MHC) region has been annotated. Previous analyses revealed only a single locus within the opossum MHC region, designated Modo-UA1, with the features expected for encoding a functionally classical class I α-chain. Nine other class I genes found within the MHC are highly divergent and have features usually associated with non-classical roles. The original annotation, however, was based on an early version of the opossum genome assembly. More recent analyses of allelic variation in individual opossums revealed too many Modo-UA1 sequences per individual to be accounted for by a single MHC class I locus found in the genome assembly. A reanalysis of a later generation assembly, MonDom5, revealed the presence of two additional loci, now designated Modo-UA3 and UA4, in a region that was expanded and more complete than in the earlier assembly. Modo-UA1, UA3, and UA4 are all transcribed, although Modo-UA4 transcripts are rarer. Modo-UA4 is also relatively non-polymorphic. Evidence presented support the accuracy of the later assembly and the existence of three related class I genes in the opossum, making opossums more typical of mammals and most tetrapods by having multiple apparent classical MHC class I loci.


Assuntos
Complexo Principal de Histocompatibilidade/genética , Monodelphis/genética , Monodelphis/imunologia , Sequência de Aminoácidos , Animais , Variação Genética , Filogenia , Alinhamento de Sequência
11.
J Immunol ; 188(8): 3912-9, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22407916

RESUMO

Analyses of the available avian genomes revealed the presence of a second TCRδ locus in the Galliformes. This second TCRδ locus is nonsyntenic to the conventional TCRα/δ and is unusual in that the V genes are more related to IgH V genes (VH) than to TCR V genes. The second TCRδ is not found in another avian lineage, the passerine zebra finch. Rather the finch's conventional TCRα/δ locus contains VH genes that are expressed with the conventional Cδ gene, similar to what has been found in amphibians. A comparison between Galliformes and Passeriformes genomic organization suggests an origin of the second TCRδ in the former lineage involving gene duplication. Expression of these atypical TCRδ transcripts with a VH domain paired with Cδ was found in lymphoid tissues of both avian lineages. The configuration of the second TCRδ in chicken and turkey is reminiscent of the TCRδ duplication that is present in nonplacental mammals and provides insight into the origin of the uniquely mammalian TCRµ locus.


Assuntos
Galliformes/genética , Genes Codificadores da Cadeia delta de Receptores de Linfócitos T , Genes Codificadores dos Receptores de Linfócitos T , Passeriformes/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Duplicação Gênica , Loci Gênicos , Genoma , Genômica , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
12.
Semin Immunol ; 22(1): 3-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20004116

RESUMO

This review summarizes analyses of marsupial and monotreme immunoglobulin and T cell receptor genetics and expression published over the past decade. Analyses of recently completed whole genome sequences from the opossum and the platypus have yielded insight into the evolution of the common antigen receptor systems, as well as discovery of novel receptors that appear to have been lost in eutherian mammals. These species are also useful for investigation of the development of the immune system in organisms notable for giving birth to highly altricial young, as well as the evolution of maternal immunity through comparison of oviparous and viviparous mammals.


Assuntos
Imunoglobulinas/imunologia , Mamíferos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Evolução Biológica , Humanos , Imunoglobulinas/genética , Mamíferos/genética , Receptores de Antígenos de Linfócitos T/genética
13.
Dev Comp Immunol ; 154: 105149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340883

RESUMO

Olfactory receptors (OR), expressed on olfactory neurons, mediate the sense of smell. Recently, OR have also been shown to be expressed in non-olfactory tissues, including cells of the immune system. An analysis of single-cell transcriptomes of splenocytes of the grey short-tailed opossum (Monodelphis domestica) found OR are expressed on a subset of T cells, the γµ T cells, that are unique to marsupials and monotremes. A majority of opossum γµ T cells transcriptomes contain OR family 14 transcripts, specifically, from the OR14C subfamily. Amongst the mammals, the OR14 gene family is expanded in the genomes of marsupials and monotremes, and rarer or absent in placental mammals. In summary, here we demonstrate the intriguing correlation that a family of OR genes, abundant in the genomes of marsupials and monotremes, are ectopically expressed in a particular subset of T cells unique to the marsupials and monotremes.


Assuntos
Marsupiais , Receptores Odorantes , Feminino , Gravidez , Animais , Marsupiais/genética , Receptores Odorantes/genética , Placenta , Genoma/genética , Mamíferos/genética , Subpopulações de Linfócitos T
14.
Mol Biol Evol ; 29(10): 3205-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22593227

RESUMO

The specific recognition of antigen by T cells is critical to the generation of adaptive immune responses in vertebrates. T cells recognize antigen using a somatically diversified T-cell receptor (TCR). All jawed vertebrates use four TCR chains called α, ß, γ, and δ, which are expressed as either a αß or γδ heterodimer. Nonplacental mammals (monotremes and marsupials) are unusual in that their genomes encode a fifth TCR chain, called TCRµ, whose function is not known but is also somatically diversified like the conventional chains. The origins of TCRµ are also unclear, although it appears distantly related to TCRδ. Recent analysis of avian and amphibian genomes has provided insight into a model for understanding the evolution of the TCRδ genes in tetrapods that was not evident from humans, mice, or other commonly studied placental (eutherian) mammals. An analysis of the genes encoding the TCRδ chains in the duckbill platypus revealed the presence of a highly divergent variable (V) gene, indistinguishable from immunoglobulin heavy (IgH) chain V genes (VH) and related to V genes used in TCRµ. They are expressed as part of TCRδ repertoire (VHδ) and similar to what has been found in frogs and birds. This, however, is the first time a VHδ has been found in a mammal and provides a critical link in reconstructing the evolutionary history of TCRµ. The current structure of TCRδ and TCRµ genes in tetrapods suggests ancient and possibly recurring translocations of gene segments between the IgH and TCRδ genes, as well as translocations of TCRδ genes out of the TCRα/δ locus early in mammals, creating the TCRµ locus.


Assuntos
Evolução Molecular , Loci Gênicos/genética , Mamíferos/genética , Modelos Genéticos , Ornitorrinco/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Sequência de Aminoácidos , Animais , Camundongos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/química , Alinhamento de Sequência
15.
J Immunol ; 187(10): 5246-54, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21976776

RESUMO

TCRµ is an unconventional TCR that was first discovered in marsupials and appears to be absent from placental mammals and nonmammals. In this study, we show that TCRµ is also present in the duckbill platypus, an egg-laying monotreme, consistent with TCRµ being ancient and present in the last common ancestor of all extant mammals. As in marsupials, platypus TCRµ is expressed in a form containing double V domains. These V domains more closely resemble Ab V than that of conventional TCR. Platypus TCRµ differs from its marsupial homolog by requiring two rounds of somatic DNA recombination to assemble both V exons and has a genomic organization resembling the likely ancestral form of the receptor genes. These results demonstrate that the ancestors of placental mammals would have had TCRµ but it has been lost from this lineage.


Assuntos
Evolução Molecular , Loci Gênicos/imunologia , Ornitorrinco/genética , Ornitorrinco/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Filogenia , Receptores de Antígenos de Linfócitos T/isolamento & purificação , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Hipermutação Somática de Imunoglobulina/genética
16.
Nature ; 447(7141): 167-77, 2007 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-17495919

RESUMO

We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.


Assuntos
Evolução Molecular , Genoma/genética , Genômica , Gambás/genética , Animais , Composição de Bases , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Biossíntese de Proteínas , Sintenia/genética , Inativação do Cromossomo X/genética
17.
ACS Appl Energy Mater ; 6(18): 9400-9408, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37779902

RESUMO

Composite polymer electrolytes (CPEs) strike an effective balance between ionic conductivity and mechanical flexibility for lithium-ion solid-state batteries. Long-term performance, however, is limited by capacity fading after hundreds of charge and discharge cycles. The causes of performance degradation include multiple contributing factors such as dendrite formation, physicochemical changes in electrolytes, and structural remodeling of porous electrodes. Among the many factors that contribute to performance degradation, the effect of stress specifically on the composite electrolyte is not well understood. This study examines the mechanical changes in a poly(ethylene oxide) electrolyte with bis(trifluoromethane) sulfonimide. Two different sizes of Li6.4La3Zr1.4Ta0.6O12 particles (500 nm and 5 µm) are compared to evaluate the effect of the surface-to-volume ratio of the ion-conducting fillers within the composite. Cyclic compression was applied to mimic stress cycling in the electrolyte, which would be caused by asymmetric volume changes that occur during charging and discharging cycles. The electrolytes exhibited fatigue softening, whereby the compressive modulus gradually decreased with an increase in the number of cycles. When the electrolyte was tested for 500 cycles at 30% compressive strain, the compressive modulus of the electrolyte was reduced to approximately 80% of the modulus before cycling. While the extent of softening was similar regardless of particle size, CPEs with 500 nm particles exhibited a significant reduction in ionic conductivity after cyclic compression (1.4 × 10-7 ± 2.3 × 10-8 vs 1.1 × 10-7 ± 2.0 × 10-8 S/cm, mean ± standard deviation, n = 4), whereas there was no significant change in ionic conductivity for CPEs with 5 µm particles. These observations -performed deliberately in the absence of charge-discharge cycles -show that repetitive mechanical stresses can play a significant role in altering the performance of CPEs, thereby revealing another possible mechanism for performance degradation in all-solid-state batteries.

18.
Immunogenetics ; 64(9): 713-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22710822

RESUMO

Full or partially germline-joined V genes have been described in a number of different vertebrate lineages where they can contribute to the expressed antibody repertoire through different mechanisms. Here we demonstrate that VH3.1, a partially germline-joined VH gene in the opossum Monodelphis domestica, can undergo V(D)J recombination to generate productive IgH transcripts. VH3.1 is fused to a DH gene segment in the germline DNA and is the only known example of a germline-joined VH in a mammal. B cells that have recombined VH3.1 were not detected until nearly 2 months of age, around the time of weaning, and much later than B cells using the conventional VH. Compared to opossum IgH transcripts using the conventional VH genes, those with VH3.1 have unusually long CDR3 due to the length of the germline-joined DH.


Assuntos
Diversidade de Anticorpos/genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Monodelphis/genética , Recombinação Genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Regiões Determinantes de Complementaridade/genética , Regulação da Expressão Gênica no Desenvolvimento , Rearranjo Gênico de Cadeia Pesada de Linfócito B/genética , Células Germinativas/imunologia , Células Germinativas/metabolismo , Dados de Sequência Molecular , Monodelphis/crescimento & desenvolvimento , Monodelphis/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Baço/crescimento & desenvolvimento , Baço/imunologia , Baço/metabolismo , Fatores de Tempo , Recombinação V(D)J/genética
19.
Immunogenetics ; 64(8): 647-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22684248

RESUMO

A VpreB surrogate light (SL) chain was identified for the first time in a marsupial, the opossum Monodelphis domestica. Comparing the opossum VpreB to homologues from eutherian (placental mammals) and avian species supported the marsupial gene being VpreB3. VpreB3 is a protein that is not known to traffic to the cell surface as part of the pre-B cell receptor. Rather, VpreB3 associates with nascent immunoglobulin chains in the endoplasmic reticulum. Homologues of other known SL chains VpreB1, VpreB2, and λ5, which are found in eutherian mammals, were not found in the opossum genome, nor have they been identified in the genomes of nonmammals. VpreB3 likely evolved from earlier gene duplication, independent of that which generated VpreB1 and VpreB2 in eutherians. The apparent absence of VpreB1, VpreB2, and λ5 in marsupials suggests that an extracellular pre-B cell receptor containing SL chains, as it has been defined in humans and mice, may be unique to eutherian mammals. In contrast, the conservation of VpreB3 in marsupials and its presence in nonmammals is consistent with previous hypotheses that it is playing a more primordial role in B cell development.


Assuntos
Monodelphis/genética , Receptores de Células Precursoras de Linfócitos B/genética , Sequência de Aminoácidos , Animais , Filogenia , Alinhamento de Sequência
20.
Immunogenetics ; 64(8): 641-5, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22592501

RESUMO

The access to whole genome sequences has provided the opportunity to study the evolution and organization of immunologically related genes on a large scale. The genes encoding the T cell receptor (TCR) α and δ chains are part of a complex locus that has shown remarkable conserved organization across different amniote lineages. In this study we have examined and annotated the TCRα/δ locus in chicken (Gallus gallus) and compared it to that of zebra finch (Taeniopygia guttata) and other avian species using the current available genome data. We also analyzed the expressed chicken TCRα/δ transcript repertoire and compared it with that previously described for zebra finch. The analyses conducted in this study show that the TCRα/δ locus in birds has undergone major rearrangements and expansion of the germ line repertoire in chicken, compared to zebra finch. A major expansion of the chicken variable gene repertoire appears to be driven by selection for genes from a limited number of subgroups.


Assuntos
Galinhas/genética , Receptores de Antígenos de Linfócitos T/genética , Animais , Evolução Molecular , Tentilhões/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA