Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Cell Sci ; 136(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149872

RESUMO

Liquid-liquid phase separation is a major mechanism for organizing macromolecules, particularly proteins with intrinsically disordered regions, in compartments not limited by a membrane or a scaffold. The cell can therefore be perceived as a complex emulsion containing many of these membraneless organelles, also referred to as biomolecular condensates, together with numerous membrane-bound organelles. It is currently unclear how such a complex concoction operates to allow for intracellular trafficking, signaling and metabolic processes to occur with high spatiotemporal precision. Based on experimental observations of synaptic vesicle condensates - a membraneless organelle that is in fact packed with membranes - we present here the framework of dipping contacts: a novel type of contact site between membraneless organelles and membranes. In this Hypothesis, we propose that our framework of dipping contacts can serve as a foundation to investigate the interface that couples the diffusion and material properties of condensates to biochemical processes occurring in membranes. The identity and regulation of this interface is especially critical in the case of neurodegenerative diseases, where aberrant inclusions of misfolded proteins and damaged organelles underlie cellular pathology.


Assuntos
Condensados Biomoleculares , Organelas , Organelas/metabolismo , Proteínas/metabolismo , Membranas , Membranas Mitocondriais
2.
Eur Phys J E Soft Matter ; 47(1): 8, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270681

RESUMO

We study the formation of vesicle condensates induced by the protein synapsin, as a cell-free model system mimicking vesicle pool formation in the synapse. The system can be considered as an example of liquid-liquid phase separation (LLPS) in biomolecular fluids, where one phase is a complex fluid itself consisting of vesicles and a protein network. We address the pertinent question why the LLPS is self-limiting and stops at a certain size, i.e., why macroscopic phase separation is prevented. Using fluorescence light microscopy, we observe different morphologies of the condensates (aggregates) depending on the protein-to-lipid ratio. Cryogenic electron microscopy then allows us to resolve individual vesicle positions and shapes in a condensate and notably the size and geometry of adhesion zones between vesicles. We hypothesize that the membrane tension induced by already formed adhesion zones then in turn limits the capability of vesicles to bind additional vesicles, resulting in a finite condensate size. In a simple numerical toy model we show that this effect can be accounted for by redistribution of effective binding particles on the vesicle surface, accounting for the synapsin-induced adhesion zone.

3.
Nano Lett ; 23(23): 10796-10801, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37862690

RESUMO

Eukaryotic cells contain membrane-bound and membrane-less organelles that are often in contact with each other. How the interface properties of membrane-less organelles regulate their interactions with membranes remains challenging to assess. Here, we employ graphene-based sensors to investigate the electrostatic properties of synapsin 1, a major synaptic phosphoprotein, either in a single phase or after undergoing phase separation to form synapsin condensates. Using these graphene-based sensors, we discover that synapsin condensates generate strong electrical responses that are otherwise absent when synapsin is present as a single phase. By introducing atomically thin dielectric barriers, we show that the electrical response originates in an electric double layer whose formation governs the interaction between synapsin condensates and graphene. Our data indicate that the interface properties of the same protein are substantially different when the protein is in a single phase versus within a biomolecular condensate, unraveling that condensates can harbor ion potential differences at their interface.


Assuntos
Condensados Biomoleculares , Grafite , Grafite/metabolismo , Sinapsinas , Proteínas , Organelas
4.
Eur Phys J E Soft Matter ; 46(12): 123, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060069

RESUMO

Vesicle pools can form by attractive interaction in a solution, mediated by proteins or divalent ions such as calcium. The pools, which are alternatively also denoted as vesicle clusters, form by liquid-liquid phase separation (LLPS) from an initially homogeneous solution. Due to the short range liquid-like order of vesicles in the pool or cluster, the vesicle-rich phase can also be regarded as a condensate, and one would like to better understand not only the structure of these systems, but also their dynamics. The diffusion of vesicles, in particular, is expected to change when vesicles are arrested in a pool. Here we investigate whether passive microrheology based on X-ray photon correlation spectroscopy (XPCS) is a suitable tool to study model systems of artificial lipid vesicles exhibiting LLPS, and more generally also other heterogeneous biomolecular fluids. We show that by adding highly scattering tracer particles to the solution, valuable information on the single vesicle as well as collective dynamics can be inferred. While the correlation functions reveal freely diffusing tracer particles in solutions at low CaCl[Formula: see text] concentrations, the relaxation rate [Formula: see text] shows a nonlinear dependence on [Formula: see text] at a higher concentration of around 8 mM CaCl[Formula: see text], characterised by two linear regimes with a broad cross-over. We explain this finding based on arrested diffusion in percolating vesicle clusters.

5.
J Neuroinflammation ; 19(1): 172, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780157

RESUMO

BACKGROUND: Deposition of amyloid beta (Aß) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer's disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aß pathology and glial cell-mediated neuroinflammation. RESULTS: Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aß and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aß and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. CONCLUSIONS: Our data highlight that the autophagy activator spermidine holds the potential to enhance Aß degradation and to counteract glia-mediated neuroinflammation in AD pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Espermidina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Espermidina/farmacologia , Espermidina/uso terapêutico
7.
J Biol Chem ; 291(15): 7868-76, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26884341

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of total plasma membrane lipids, but it has a substantial role in the regulation of many cellular functions, including exo- and endocytosis. Recently, it was shown that PI(4,5)P2and syntaxin 1, a SNARE protein that catalyzes regulated exocytosis, form domains in the plasma membrane that constitute recognition sites for vesicle docking. Also, calcium was shown to promote syntaxin 1 clustering in the plasma membrane, but the molecular mechanism was unknown. Here, using a combination of superresolution stimulated emission depletion microscopy, FRET, and atomic force microscopy, we show that Ca(2+)acts as a charge bridge that specifically and reversibly connects multiple syntaxin 1/PI(4,5)P2complexes into larger mesoscale domains. This transient reorganization of the plasma membrane by physiological Ca(2+)concentrations is likely to be important for Ca(2+)-regulated secretion.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sintaxina 1/metabolismo , Animais , Cálcio/química , Células PC12 , Estrutura Terciária de Proteína , Ratos
8.
Chembiochem ; 17(6): 479-85, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26879104

RESUMO

Artificial SNARE analogues derived from SNARE proteins, which mediate synaptic membrane fusion, are of interest. They mimic the tetrameric α-helix bundle of the SNARE motif with various bio-oligomer recognition units. Interaction between complementary oligomers linked to the respective membrane by lipid or peptide anchors leads to proximity of vesicles and to fusion of lipid bilayers. ß-Peptide nucleic acids were introduced as hybrid oligomers with the native SNARE protein transmembrane/linker sequence, in order to evaluate a fusion system that allows distance tuning of approaching membranes. Formation of a four-base pair ß-PNA double strand with 20 Šlength is sufficient for vesicle membrane fusion. Elongation of the recognition ß-PNA duplex in the linker region yielded a 40 Šß-peptide duplex and provided a vesicle-vesicle distance that only supported hemifusion of vesicle membranes.


Assuntos
Ácidos Nucleicos Peptídicos/química , Proteínas SNARE/química , Simulação de Acoplamento Molecular
9.
J Parkinsons Dis ; 14(1): 17-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189713

RESUMO

Lewy bodies (LBs) are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, characterized by the accumulation of α-synuclein (αSyn) protein in the brain. While LBs were first described a century ago, their formation and morphogenesis mechanisms remain incompletely understood. Here, we present a historical overview of LB definitions and highlight the importance of semantic clarity and precise definitions when describing brain inclusions. Recent breakthroughs in imaging revealed shared features within LB subsets and the enrichment of membrane-bound organelles in these structures, challenging the conventional LB formation model. We discuss the involvement of emerging concepts of liquid-liquid phase separation, where biomolecules demix from a solution to form dense condensates, as a potential LB formation mechanism. Finally, we emphasize the need for the operational definitions of LBs based on morphological characteristics and detection protocols, particularly in studies investigating LB formation mechanisms. A better understanding of LB organization and ultrastructure can contribute to the development of targeted therapeutic strategies for synucleinopathies.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Corrida , Sinucleinopatias , Humanos , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Sinucleinopatias/metabolismo , Doença por Corpos de Lewy/patologia
10.
Trends Cell Biol ; 34(4): 274-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429121

RESUMO

Can the fusion/fission of biomolecular condensates be regulated in cells? In a recent study, Wu et al. show that phosphorylation of a key scaffold protein that drives condensates in postsynaptic densities modulates the apparent miscibility of underlying components, thus enabling intracondensate demixing-to-mixing transitions.


Assuntos
Fosforilação
11.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866497

RESUMO

Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.


Assuntos
Camundongos Knockout , Fibras Musgosas Hipocampais , Plasticidade Neuronal , Terminações Pré-Sinápticas , Sinapsinas , Animais , Sinapsinas/metabolismo , Sinapsinas/genética , Fibras Musgosas Hipocampais/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia
12.
Mol Biol Cell ; 35(1): ar10, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991902

RESUMO

α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV) trafficking. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), α-synuclein aberrantly accumulates throughout neurons, including at synapses. During neuronal activity, α-synuclein is reversibly phosphorylated at serine 129 (pS129). While pS129 comprises ∼4% of total α-synuclein under physiological conditions, it dramatically increases in PD and DLB brains. The impacts of excess pS129 on synaptic function are currently unknown. We show here that compared with wild-type (WT) α-synuclein, pS129 exhibits increased binding and oligomerization on synaptic membranes and enhanced vesicle "microclustering" in vitro. Moreover, when acutely injected into lamprey reticulospinal axons, excess pS129 α-synuclein robustly localized to synapses and disrupted SV trafficking in an activity-dependent manner, as assessed by ultrastructural analysis. Specifically, pS129 caused a declustering and dispersion of SVs away from the synaptic vicinity, leading to a significant loss of total synaptic membrane. Live imaging further revealed altered SV cycling, as well as microclusters of recently endocytosed SVs moving away from synapses. Thus, excess pS129 caused an activity-dependent inhibition of SV trafficking via altered vesicle clustering/reclustering. This work suggests that accumulation of pS129 at synapses in diseases like PD and DLB could have profound effects on SV dynamics.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Fosfosserina/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Lampreias
13.
Cell Death Dis ; 15(4): 304, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693139

RESUMO

Abnormal intraneuronal accumulation of soluble and insoluble α-synuclein (α-Syn) is one of the main pathological hallmarks of synucleinopathies, such as Parkinson's disease (PD). It has been well documented that the reversible liquid-liquid phase separation of α-Syn can modulate synaptic vesicle condensates at the presynaptic terminals. However, α-Syn can also form liquid-like droplets that may convert into amyloid-enriched hydrogels or fibrillar polymorphs under stressful conditions. To advance our understanding on the mechanisms underlying α-Syn phase transition, we employed a series of unbiased proteomic analyses and found that actin and actin regulators are part of the α-Syn interactome. We focused on Neural Wiskott-Aldrich syndrome protein (N-WASP) because of its association with a rare early-onset familial form of PD. In cultured cells, we demonstrate that N-WASP undergoes phase separation and can be recruited to synapsin 1 liquid-like droplets, whereas it is excluded from α-Syn/synapsin 1 condensates. Consistently, we provide evidence that wsp-1/WASL loss of function alters the number and dynamics of α-Syn inclusions in the nematode Caenorhabditis elegans. Together, our findings indicate that N-WASP expression may create permissive conditions that promote α-Syn condensates and their potentially deleterious conversion into toxic species.


Assuntos
Caenorhabditis elegans , Proteína Neuronal da Síndrome de Wiskott-Aldrich , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Animais , Humanos , Caenorhabditis elegans/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Sinapsinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
14.
Trends Neurosci ; 46(4): 293-306, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36725404

RESUMO

Neuronal communication crucially relies on exocytosis of neurotransmitters from synaptic vesicles (SVs) which are clustered at synapses. To ensure reliable neurotransmitter release, synapses need to maintain an adequate pool of SVs at all times. Decades of research have established that SVs are clustered by synapsin 1, an abundant SV-associated phosphoprotein. The classical view postulates that SVs are crosslinked in a scaffold of protein-protein interactions between synapsins and their binding partners. Recent studies have shown that synapsins cluster SVs via liquid-liquid phase separation (LLPS), thus providing a new framework for the organization of the synapse. We discuss the evidence for phase separation of SVs, emphasizing emerging questions related to its regulation, specificity, and reversibility.


Assuntos
Sinapsinas , Vesículas Sinápticas , Humanos , Vesículas Sinápticas/metabolismo , Sinapsinas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Biologia
15.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662300

RESUMO

Neurotransmitter is released from dedicated sites of synaptic vesicle fusion within a synapse. Following fusion, the vacated sites are replenished immediately by new vesicles for subsequent neurotransmission. These replacement vesicles are assumed to be located near release sites and used by chance. Here, we find that replacement vesicles are clustered around this region by Intersectin-1. Specifically, Intersectin-1 forms dynamic molecular condensates with Endophilin A1 near release sites and sequesters vesicles around this region. In the absence of Intersectin-1, vesicles within 20 nm of the plasma membrane are reduced, and consequently, vacated sites cannot be replenished rapidly, leading to depression of synaptic transmission. Similarly, mutations in Intersectin-1 that disrupt Endophilin A1 binding result in similar phenotypes. However, in the absence of Endophilin, this replacement pool of vesicles is available but cannot be accessed, suggesting that Endophilin A1 is needed to mobilize these vesicles. Thus, our work describes a distinct physical region within a synapse where replacement vesicles are harbored for release site replenishment.

16.
Front Immunol ; 14: 1101087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742338

RESUMO

Maternal autoantibodies can be transmitted diaplacentally, with potentially deleterious effects on neurodevelopment. Synapsin 1 (SYN1) is a neuronal protein that is important for synaptic communication and neuronal plasticity. While monoallelic loss of function (LoF) variants in the SYN1 gene result in X-linked intellectual disability (ID), learning disabilities, epilepsy, behavioral problems, and macrocephaly, the effect of SYN1 autoantibodies on neurodevelopment remains unclear. We recruited a clinical cohort of 208 mothers and their children with neurologic abnormalities and analyzed the role of maternal SYN1 autoantibodies. We identified seropositivity in 9.6% of mothers, and seropositivity was associated with an increased risk for ID and behavioral problems. Furthermore, children more frequently had epilepsy, macrocephaly, and developmental delay, in line with the SYN1 LoF phenotype. Whether SYN1 autoantibodies have a direct pathogenic effect on neurodevelopment or serve as biomarkers requires functional experiments.


Assuntos
Autoanticorpos , Epilepsia , Deficiência Intelectual , Humanos , Neurônios/metabolismo , Fenótipo , Sinapsinas/genética , Sinapsinas/metabolismo
17.
Nat Commun ; 14(1): 6730, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872159

RESUMO

Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.


Assuntos
Sinapsinas , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais Geneticamente Modificados
18.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37200023

RESUMO

Endosomal Sorting Complex Required for Transport (ESCRT) proteins can be transiently recruited to the plasma membrane for membrane repair and formation of extracellular vesicles. Here, we discovered micrometer-sized worm-shaped ESCRT structures that stably persist for multiple hours at the plasma membrane of macrophages, dendritic cells, and fibroblasts. These structures surround clusters of integrins and known cargoes of extracellular vesicles. The ESCRT structures are tightly connected to the cellular support and are left behind by the cells together with surrounding patches of membrane. The phospholipid composition is altered at the position of the ESCRT structures, and the actin cytoskeleton is locally degraded, which are hallmarks of membrane damage and extracellular vesicle formation. Disruption of actin polymerization increased the formation of the ESCRT structures and cell adhesion. The ESCRT structures were also present at plasma membrane contact sites with membrane-disrupting silica crystals. We propose that the ESCRT proteins are recruited to adhesion-induced membrane tears to induce extracellular shedding of the damaged membrane.


Assuntos
Actinas , Complexos Endossomais de Distribuição Requeridos para Transporte , Integrinas , Actinas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Integrinas/genética , Integrinas/metabolismo , Transporte Proteico , Fosfolipídeos/química , Membrana Celular , Macrófagos , Células Dendríticas , Fibroblastos , Humanos , Conformação Proteica
19.
J Mol Biol ; 435(5): 167971, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690068

RESUMO

In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1-3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4-7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ∼25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates.


Assuntos
Condensados Biomoleculares , Doença , Transição de Fase , Humanos
20.
Brain Behav Immun Health ; 33: 100678, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37692096

RESUMO

Anti-neuronal autoantibodies can be transplacentally transferred during pregnancy and may cause detrimental effects on fetal development. It is unclear whether autoantibodies against synapsin-I, one of the most abundant synaptic proteins, are associated with developmental abnormalities in humans. We recruited a cohort of 263 pregnant women and detected serum synapsin-I IgG autoantibodies in 13.3% using cell-based assays. Seropositivity was strongly associated with abnormalities of fetal development including structural defects, intrauterine growth retardation, amniotic fluid disorders and neuropsychiatric developmental diseases in previous children (odds ratios of 3-6.5). Autoantibodies reached the fetal circulation and were mainly of IgG1/IgG3 subclasses. They bound to conformational and linear synapsin-I epitopes, five distinct epitopes were identified using peptide microarrays. The findings indicate that synapsin-I autoantibodies may be clinically useful biomarkers or even directly participate in the disease process of neurodevelopmental disorders, thus being potentially amenable to antibody-targeting interventional strategies in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA