Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 63: 226-32, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25125211

RESUMO

We report the application of diatom as a solid carrier for water insoluble drugs applied in oral drug delivery system based on the self-emulsifying drug delivery system (SEDDS) caprylocaproyl macrogol-8 glycerides/lecithin/propylene glycol/caprylic/capric triglyceride. Diatoms are fossilized skeletons of photosynthetic algae with complex 3-dimensional (3D), porous structure consisting of amorphous silica, obtained by purification of diatomaceous earth. Different solid samples of carbamazepine (CBZ) suspension in SEDDS, called solid self-emulsifying phospholipid suspension (SSEPS), were prepared using two methods: adsorption of CBZ dispersion in SEDDS by gentle mixing with diatoms in mortar with pestle (Method A) or dispersion of diatoms in ethanol solution of CBZ and SEDDS components, followed by ethanol evaporation (Method B). Release rate of CBZ from SSEPS was significantly higher in comparison to pure drug, physical mixture of diatoms and CBZ as well as solid dispersion of pure CBZ and diatoms obtained by ethanol evaporation. The dissolution of CBZ from SSEPS sample prepared using method B was faster than from the sample prepared by the method A. Higher dissolution for sample prepared by the method B can be attributed to the partial adsorption (deeper localization) of liquid material inside the pores of diatoms. Upon storage of the samples under accelerated conditions (40°C and 70% RH) for 10 weeks no significant changes in CBZ crystallinity and dissolution was in case of SSEPS, contrary to solid dispersion with increased crystallinity, indicating that diatoms with adsorbed liquid CBZ-loaded SEPS can maintain initial CBZ characteristics.


Assuntos
Carbamazepina/química , Diatomáceas/química , Portadores de Fármacos/química , Fosfolipídeos/química , Sistemas de Liberação de Medicamentos , Emulsões , Estrutura Molecular , Tamanho da Partícula , Porosidade , Dióxido de Silício/química , Propriedades de Superfície , Suspensões/química
2.
Int J Pharm ; 436(1-2): 58-65, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22721847

RESUMO

The purpose of this study was to investigate solid self-microemulsifying drug delivery system (SSMEDDS), as potential delivery system for poorly water soluble drug carbamazepine (CBZ). Self-microemulsifying drug delivery system (SMEDDS) was formulated using the surfactant polyoxyethylene 20 sorbitan monooleate [Polysorbate 80] (S), the cosurfactant PEG-40 hydrogenated castor oil [Cremophor(®) RH40] (C) and the oil caprylic/capric triglycerides [Mygliol(®) 812] (O). Four different adsorbents with high specific surface area were used: Neusilin(®) UFL2, Neusilin(®) FL2 (magnesium aluminometasilicate), Sylysia(®) 320 and Sylysia(®) 350 (porous silica). Microemulsion area at the surfactant to cosurfactant ratio (K(m)) 1:1 was evaluated and for further investigation SMEDDS with SC/O ratio 8:2 was selected. Solubilization capacity of selected SMEDDS for CBZ was 33.771±0.041 mg/ml. Rheological measurements of unloaded and CBZ-loaded SMEDDS at water content varied from 10 to 60% (w/w) were conducted. It has been found that CBZ has great influence on rheological behaviour of investigated system upon water dilution. Photon correlation spectroscopy has shown the ability of CBZ-loaded SMEDDS to produce microemulsion droplet size. SSMEDDS improved release rate of CBZ, but the type of adsorbent significantly affects release rate of CBZ. For SSMEDDS with different magnesium aluminometasilicate adsorbents, release rate of CBZ decreased with increasing specific surface area due to entrapment of liquid SMEDDS inside the pores and its gradual exposure to dissolution medium. With porous silica adsorbents no difference in release rate was found in comparison to physical mixtures. In physical mixtures at 12.5% (w/w) CBZ content, presence of amorphous CBZ led to high dissolution rate.


Assuntos
Anticonvulsivantes/química , Carbamazepina/química , Portadores de Fármacos/química , Silicatos de Alumínio/química , Emulsões , Magnésio/química , Polietilenoglicóis/química , Polissorbatos/química , Porosidade , Dióxido de Silício/química , Solubilidade , Tensoativos/química , Triglicerídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA