Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Chimia (Aarau) ; 78(1-2): 13-21, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38430059

RESUMO

Modern societies rely heavily on centralized industrial processes to generate a multitude of products ranging from electrical energy to synthetic chemical building blocks to construction materials. To date, these processes have relied extensively on energy produced from fossil fuels, which has led to dramatically increased quantities of greenhouse gases (including carbon dioxide) being released into the atmosphere; the effects of the ensuing change to our climate are easily observed in day-to-day life. Some of the reactions catalyzed by these industrial processes can be catalyzed in nature by metal-containing enzymes (metalloenzymes) that have evolved over the course of up to 3.8 billion years to do so under mild physiological conditions using Earth-abundant metals. While such metalloenzymes could in principle facilitate the implementation of carbon-neutral processes around the globe, either in "bio-inspired" catalyst design or even by direct exploitation, many remaining questions surrounding their mechanisms often preclude both options. Here, our recent efforts in understanding and applying metalloenzymes that catalyze reactions such as dinitrogen reduction to ammonia or proton reduction to molecular hydrogen are discussed. In closing, an opinion on the question: "Can these types of enzymes really be used in new biotechnologies?" is offered.


Assuntos
Elétrons , Metaloproteínas , Biotecnologia , Catálise , Transporte de Elétrons , Metaloproteínas/química
2.
Angew Chem Int Ed Engl ; 62(45): e202311981, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712590

RESUMO

Massive efforts are invested in developing innovative CO2 -sequestration strategies to counter climate change and transform CO2 into higher-value products. CO2 -capture by reduction is a chemical challenge, and attention is turned toward biological systems that selectively and efficiently catalyse this reaction under mild conditions and in aqueous solvents. While a few reports have evaluated the effectiveness of isolated bacterial formate dehydrogenases as catalysts for the reversible electrochemical reduction of CO2 , it is imperative to explore other enzymes among the natural reservoir of potential models that might exhibit higher turnover rates or preferential directionality for the reductive reaction. Here, we present electroenzymatic catalysis of formylmethanofuran dehydrogenase, a CO2 -reducing-and-fixing biomachinery isolated from a thermophilic methanogen, which was deposited on a graphite rod electrode to enable direct electron transfer for electroenzymatic CO2 reduction. The gas is reduced with a high Faradaic efficiency (109±1 %), where a low affinity for formate prevents its electrochemical reoxidation and favours formate accumulation. These properties make the enzyme an excellent tool for electroenzymatic CO2 -fixation and inspiration for protein engineering that would be beneficial for biotechnological purposes to convert the greenhouse gas into stable formate that can subsequently be safely stored, transported, and used for power generation without energy loss.


Assuntos
Dióxido de Carbono , Formiato Desidrogenases , Dióxido de Carbono/química , Oxirredução , Catálise , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo
3.
Chembiochem ; 23(18): e202200197, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35816250

RESUMO

Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.


Assuntos
Peróxido de Hidrogênio , Mioglobina , Aminoácidos , Guaiacol , Heme/química , Peróxido de Hidrogênio/química , Manganês , Mioglobina/química , Mioglobina/genética , Mioglobina/metabolismo , Peroxidases/metabolismo
4.
Angew Chem Int Ed Engl ; 60(18): 10001-10006, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33630389

RESUMO

Gas-processing metalloenzymes are of interest to future bio- and bioinspired technologies. Of particular importance are hydrogenases and nitrogenases, which both produce molecular hydrogen (H2 ) from proton (H+ ) reduction. Herein, we report on the use of rotating ring-disk electrochemistry (RRDE) and mass spectrometry (MS) to follow the production of H2 and isotopes produced from deuteron (D+ ) reduction (HD and D2 ) using the [FeFe]-hydrogenase from Clostridium pasteurianum, a model hydrogen-evolving metalloenzyme. This facilitates enzymology studies independent of non-innocent chemical reductants. We anticipate that these approaches will be of value in resolving the catalytic mechanisms of H2 -producing metalloenzymes and the design of bioinspired catalysts for H2 production and N2 fixation.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Clostridium/enzimologia , Técnicas Eletroquímicas , Eletrodos , Hidrogênio/química , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Espectrometria de Massas
5.
Acc Chem Res ; 52(12): 3351-3360, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31800207

RESUMO

The fixation of atmospheric dinitrogen to ammonia by industrial technologies (such as the Haber Bosch process) has revolutionized humankind. In contrast to industrial technologies, a single enzyme is known for its ability to reduce or "fix" dinitrogen: nitrogenase. Nitrogenase is a complex oxidoreductase enzymatic system that includes a catalytic protein (where dinitrogen is reduced) and an electron-transferring reductase protein (termed the Fe protein) that delivers the electrons necessary for dinitrogen fixation. The catalytic protein most commonly contains a FeMo cofactor (called the MoFe protein), but it can also contain a VFe or FeFe cofactor. Besides their ability to fix dinitrogen to ammonia, these nitrogenases can also reduce substrates such as carbon dioxide to formate. Interestingly, the VFE nitrogenase can also form carbon-carbon bonds. The vast majority of research surrounding nitrogenase employs the Fe protein to transfer electrons, which is also associated with the rate-limiting step of nitrogenase catalysis and also requires the hydrolysis of adenosine triphosphate. Thus, there is significant interest in artificially transferring electrons to the catalytic nitrogenase proteins. In this Account, we review nitrogenase electrocatalysis whereby electrons are delivered to nitrogenase from electrodes. We first describe the use of an electron mediator (cobaltocene) to transfer electrons from electrodes to the MoFe protein. The reduction of protons to molecular hydrogen was realized, in addition to azide and nitrite reduction to ammonia. Bypassing the rate-limiting step within the Fe protein, we also describe how this approach was used to interrogate the rate-limiting step of the MoFe protein: metal-hydride protonolysis at the FeMo-co. This Account next reviews the use of cobaltocene to mediate electron transfer to the VFe protein, where the reduction of carbon dioxide and the formation of carbon-carbon bonds (yielding the formation of ethene and propene) was realized. This approach also found success in mediating electron transfer to the FeFe catalytic protein, which exhibited improved carbon dioxide reduction in comparison to the MoFe protein. In the final example of mediated electron transfer to the catalytic protein, this Account also reviews recent work where the coupling of infrared spectroscopy with electrochemistry enabled the potential-dependent binding of carbon monoxide to the FeMo-co to be studied. As an alternative to mediated electron transfer, recent work that has sought to transfer electrons to the catalytic proteins in the absence of electron mediators (by direct electron transfer) is also reviewed. This approach has subsequently enabled a thermodynamic landscape to be proposed for the cofactors of the catalytic proteins. Finally, this Account also describes nitrogenase electrocatalysis whereby electrons are first transferred from an electrode to the Fe protein, before being transferred to the MoFe protein alongside the hydrolysis of adenosine triphosphate. In this way, increased quantities of ammonia can be electrocatalytically produced from dinitrogen fixation. We discuss how this has led to the further upgrade of electrocatalytically produced ammonia, in combination with additional enzymes (diaphorase, alanine dehydrogenase, and transaminase), to selective production of chiral amine intermediates for pharmaceuticals. This Account concludes by discussing current and future research challenges in the field of electrocatalytic nitrogen fixation by nitrogenase.


Assuntos
Biocatálise , Técnicas de Química Sintética/métodos , Nitrogenase/química , Nitrogenase/metabolismo , Eletroquímica
6.
Chemistry ; 26(32): 7323-7329, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32074397

RESUMO

Molecular hydrogen is a major high-energy carrier for future energy technologies, if produced from renewable electrical energy. Hydrogenase enzymes offer a pathway for bioelectrochemically producing hydrogen that is advantageous over traditional platforms for hydrogen production because of low overpotentials and ambient operating temperature and pressure. However, electron delivery from the electrode surface to the enzyme's active site is often rate-limiting. Here, it is shown that three different hydrogenases from Clostridium pasteurianum and Methanococcus maripaludis, when immobilized at a cathode in a cobaltocene-functionalized polyallylamine (Cc-PAA) redox polymer, mediate rapid and efficient hydrogen evolution. Furthermore, it is shown that Cc-PAA-mediated hydrogenases can operate at high faradaic efficiency (80-100 %) and low apparent overpotential (-0.578 to -0.593 V vs. SHE). Specific activities of these hydrogenases in the electrosynthetic Cc-PAA assay were comparable to their respective activities in traditional methyl viologen assays, indicating that Cc-PAA mediates electron transfer at high rates, to most of the embedded enzymes.


Assuntos
Hidrogéis/química , Hidrogênio/química , Hidrogenase/química , Paraquat/química , Polímeros/metabolismo , Domínio Catalítico , Clostridium/enzimologia , Eletrodos , Elétrons , Oxirredução
7.
Biochemistry ; 57(32): 4848-4857, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30010323

RESUMO

Hydrogenotrophic methanogens oxidize molecular hydrogen to reduce carbon dioxide to methane. In methanogens without cytochromes, the initial endergonic reduction of CO2 to formylmethanofuran with H2-derived electrons is coupled to the exergonic reduction of a heterodisulfide of coenzymes B and M by flavin-based electron bifurcation (FBEB). In Methanococcus maripaludis, FBEB is performed by a heterodisulfide reductase (Hdr) enzyme complex that involves hydrogenase (Vhu), although formate dehydrogenase (Fdh) has been proposed as an alternative to Vhu. We have identified and purified three Hdr complexes of M. maripaludis, where homodimeric Hdr complexes containing (Vhu)2 or (Fdh)2 were found, in addition to a heterocomplex that contains both Vhu and Fdh. Formate was found in in vitro assays using the purified Hdr complex to act directly as the electron donor for FBEB via the associated Fdh. Furthermore, while ferredoxin was slowly reduced to 30% [-360 mV vs the standard hydrogen electrode (SHE)] by H2 and formate (0.8 atm and 30 mM, according to thermodynamics), the addition of CoB-S-S-CoM as the high-potential electron acceptor ( E°' = -140 mV vs SHE; to induce FBEB) resulted in the rapid and more complete reduction of Fd to 94% (-455 mV vs SHE).


Assuntos
Mathanococcus/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Eletroquímica , Flavinas/metabolismo , Formiatos/metabolismo , Hidrogênio/metabolismo , Oxirredução , Ligação Proteica , Proteômica
8.
J Am Chem Soc ; 140(15): 5041-5044, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29608063

RESUMO

Over the past decade, there has been significant research in electrochemical reduction of CO2, but it has been difficult to develop catalysts capable of C-C bond formation. Here, we report bioelectrocatalysis of vanadium nitrogenase from Azotobacter vinelandii, where cobaltocenium derivatives transfer electrons to the catalytic VFe protein, independent of ATP-hydrolysis. In this bioelectrochemical system, CO2 is reduced to ethylene (C2H4) and propene (C3H6), by a single metalloenzyme.

9.
Angew Chem Int Ed Engl ; 57(22): 6582-6586, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29656589

RESUMO

Increasing greenhouse gas emissions have resulted in greater motivation to find novel carbon dioxide (CO2 ) reduction technologies, where the reduction of CO2 to valuable chemical commodities is desirable. Molybdenum-dependent formate dehydrogenase (Mo-FDH) from Escherichia coli is a metalloenzyme that is able to interconvert formate and CO2 . We describe a low-potential redox polymer, synthesized by a facile method, that contains cobaltocene (grafted to poly(allylamine), Cc-PAA) to simultaneously mediate electrons to Mo-FDH and immobilize Mo-FDH at the surface of a carbon electrode. The resulting bioelectrode reduces CO2 to formate with a high Faradaic efficiency of 99±5 % at a mild applied potential of -0.66 V vs. SHE.

10.
J Am Chem Soc ; 139(26): 9044-9052, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28595003

RESUMO

Nitrogenase, the only enzyme known to be able to reduce dinitrogen (N2) to ammonia (NH3), is irreversibly damaged upon exposure to molecular oxygen (O2). Several microbes, however, are able to grow aerobically and diazotrophically (fixing N2 to grow) while containing functional nitrogenase. The obligate aerobic diazotroph, Azotobacter vinelandii, employs a multitude of protective mechanisms to preserve nitrogenase activity, including a "conformational switch" protein (FeSII, or "Shethna") that reversibly locks nitrogenase into a multicomponent protective complex upon exposure to low concentrations of O2. We demonstrate in vitro that nitrogenase can be oxidatively damaged under anoxic conditions and that the aforementioned conformational switch can protect nitrogenase from such damage, confirming that the conformational change in the protecting protein can be achieved solely by regulating the potential of its [2Fe-2S] cluster. We further demonstrate that this protective complex preserves nitrogenase activity upon exposure to air. Finally, this protective FeSII protein was incorporated into an O2-tolerant bioelectrosynthetic cell whereby NH3 was produced using air as a substrate, marking a significant step forward in overcoming the crippling limitation of nitrogenase's sensitivity toward O2.


Assuntos
Azotobacter vinelandii/enzimologia , Nitrogenase/química , Oxigênio/metabolismo , Conformação Molecular , Oxirredução
11.
J Am Chem Soc ; 139(38): 13518-13524, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28851217

RESUMO

Nitrogenase catalyzes the reduction of dinitrogen (N2) to two ammonia (NH3) at its active site FeMo-cofactor through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides to make H2. A competing reaction is the protonation of the hydride [Fe-H-Fe] to make H2. The overall nitrogenase rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to the MoFe protein allowing examination of the mechanism of H2 formation by the metal-hydride protonation reaction. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, was found to change linearly with the D2O/H2O ratio, revealing that a single H/D is involved in the rate-limiting step of H2 formation. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein, either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the S-H+ bond breaks and H+ attacks the Fe-hydride, and explains the observed H/D isotope effect. This study not only reveals the nitrogenase mechanism of H2 formation by hydride protonation, but also illustrates a strategy for mechanistic study that can be applied to other oxidoreductase enzymes and to biomimetic complexes.


Assuntos
Deutério/química , Hidrogênio/química , Metais/química , Nitrogenase/metabolismo , Prótons , Azotobacter vinelandii/química , Catálise , Cinética , Molibdoferredoxina/metabolismo , Oxirredução
12.
Angew Chem Int Ed Engl ; 56(10): 2680-2683, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28156040

RESUMO

Nitrogenases are the only enzymes known to reduce molecular nitrogen (N2 ) to ammonia (NH3 ). By using methyl viologen (N,N'-dimethyl-4,4'-bipyridinium) to shuttle electrons to nitrogenase, N2 reduction to NH3 can be mediated at an electrode surface. The coupling of this nitrogenase cathode with a bioanode that utilizes the enzyme hydrogenase to oxidize molecular hydrogen (H2 ) results in an enzymatic fuel cell (EFC) that is able to produce NH3 from H2 and N2 while simultaneously producing an electrical current. To demonstrate this, a charge of 60 mC was passed across H2 /N2 EFCs, which resulted in the formation of 286 nmol NH3  mg-1 MoFe protein, corresponding to a Faradaic efficiency of 26.4 %.

13.
Anal Chem ; 88(6): 3243-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864988

RESUMO

The reversible inhibition of laccase by arsenite (As(3+)) and arsenate (As(5+)) is reported for the first time. Oxygen-reducing laccase bioelectrodes were found to be inhibited by both arsenic species for direct electron-transfer bioelectrodes (using anthracene functionalities for enzymatic orientation) and for mediated electron-transfer bioelectrodes [using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as an electron mediator]. Both arsenic species were determined to behave via a mixed inhibition model (behaving closely to that of uncompetitive inhibitors) when evaluated spectrophotometrically using ABTS as the electron donor. Finally, laccase bioelectrodes were employed within an enzymatic fuel cell, yielding a self-powered biosensor for arsenite and arsenate. This conceptual self-powered arsenic biosensor demonstrated limits of detection (LODs) of 13 µM for arsenite and 132 µM for arsenate. Further, this device possessed sensitivities of 0.91 ± 0.07 mV/mM for arsenite and 0.98 ± 0.02 mV/mM for arsenate.


Assuntos
Arseniatos/farmacologia , Arsenitos/farmacologia , Técnicas Biossensoriais , Lacase/antagonistas & inibidores , Espectrofotometria Ultravioleta
14.
Langmuir ; 32(10): 2291-301, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26898265

RESUMO

Bioelectrocatalysis is an expanding research area due to the use of this type of electrocatalysis in electrochemical biosensors, biofuel cells, bioelectrochemical cells, and biosolar cells. This feature article discusses recent advancements in tailoring the biointerface between electrodes and biocatalysts for facile electrocatalysis. This includes the design of pyrene moieties for directing the orientation of biocatalysts on electrode surfaces and mediation as well as the rational design of redox polymers for self-exchange-based electron transport to/from biocatalysts and the electrode and the use of bioscaffolding techniques for designing the bioelectrode structure. However, recent advances in the past decade have shown the importance of hybrid bioelectrocatalytic systems, and future work will be needed to use these same pyrene, redox polymer, and bioscaffolding techniques for hybrid bioelectrocatalysis.


Assuntos
Biocatálise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Bactérias/química , Fontes de Energia Bioelétrica , DNA/química , DNA Catalítico/química , Glucose Oxidase/química , Lacase/química , Organelas/química , Oxirredução , Polímeros/química , Pirenos/química , RNA Catalítico/química
15.
FEBS J ; 291(15): 3454-3480, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38696373

RESUMO

The nitrogenase reductase NifH catalyses ATP-dependent electron delivery to the Mo-nitrogenase, a reaction central to biological dinitrogen (N2) fixation. While NifHs have been extensively studied in bacteria, structural information about their archaeal counterparts is limited. Archaeal NifHs are considered more ancient, particularly those from Methanococcales, a group of marine hydrogenotrophic methanogens, which includes diazotrophs growing at temperatures near 92 °C. Here, we structurally and biochemically analyse NifHs from three Methanococcales, offering the X-ray crystal structures from meso-, thermo-, and hyperthermophilic methanogens. While NifH from Methanococcus maripaludis (37 °C) was obtained through heterologous recombinant expression, the proteins from Methanothermococcus thermolithotrophicus (65 °C) and Methanocaldococcus infernus (85 °C) were natively purified from the diazotrophic archaea. The structures from M. thermolithotrophicus crystallised as isolated exhibit high flexibility. In contrast, the complexes of NifH with MgADP obtained from the three methanogens are superposable, more rigid, and present remarkable structural conservation with their homologues. They retain key structural features of P-loop NTPases and share similar electrostatic profiles with the counterpart from the bacterial model organism Azotobacter vinelandii. In comparison to the NifH from the phylogenetically distant Methanosarcina acetivorans, these reductases do not cross-react significantly with Mo-nitrogenase from A. vinelandii. However, they associate with bacterial nitrogenase when ADP· AlF 4 - is added to mimic a transient reactive state. Accordingly, detailed surface analyses suggest that subtle substitutions would affect optimal binding during the catalytic cycle between the NifH from Methanococcales and the bacterial nitrogenase, implying differences in the N2-machinery from these ancient archaea.


Assuntos
Methanococcales , Modelos Moleculares , Oxirredutases , Cristalografia por Raios X , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/genética , Methanococcales/enzimologia , Methanococcales/genética , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Conformação Proteica , Nitrogenase/metabolismo , Nitrogenase/química , Nitrogenase/genética
16.
Chem Sci ; 15(16): 6088-6094, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665532

RESUMO

The assembly of semiconductors as light absorbers and enzymes as redox catalysts offers a promising approach for sustainable chemical synthesis driven by light. However, achieving the rational design of such semi-artificial systems requires a comprehensive understanding of the abiotic-biotic interface, which poses significant challenges. In this study, we demonstrate an electrostatic interaction strategy to interface negatively charged cyanamide modified graphitic carbon nitride (NCNCNX) with an [FeFe]-hydrogenase possessing a positive surface charge around the distal FeS cluster responsible for electron uptake into the enzyme. The strong electrostatic attraction enables efficient solar hydrogen (H2) production via direct interfacial electron transfer (DET), achieving a turnover frequency (TOF) of 18 669 h-1 (4 h) and a turnover number (TON) of 198 125 (24 h). Interfacial characterizations, including quartz crystal microbalance (QCM), photoelectrochemical impedance spectroscopy (PEIS), intensity-modulated photovoltage spectroscopy (IMVS), and transient photocurrent spectroscopy (TPC) have been conducted on the semi-artificial carbon nitride-enzyme system to provide a comprehensive understanding for the future development of photocatalytic hybrid assemblies.

17.
Phys Chem Chem Phys ; 15(44): 19371-9, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24121716

RESUMO

Hydrogen peroxide production by glucose oxidase (GOx) and its negative effect on laccase performance have been studied. Simultaneously, FAD-dependent glucose dehydrogenase (FAD-GDH), an O2-insensitive enzyme, has been evaluated as a substitute. Experiments focused on determining the effect of the side reaction of GOx between its natural electron acceptor O2 (consumed) and hydrogen peroxide (produced) in the electrolyte. Firstly, oxygen consumption was investigated by both GOx and FAD-GDH in the presence of substrate. Relatively high electrocatalytic currents were obtained with both enzymes. O2 consumption was observed with immobilized GOx only, whilst O2 concentration remained stable for the FAD-GDH. Dissolved oxygen depletion effects on laccase electrode performances were investigated with both an oxidizing and a reducing electrode immersed in a single compartment. In the presence of glucose, dramatic decreases in cathodic currents were recorded when laccase electrodes were combined with a GOx-based electrode only. Furthermore, it appeared that the major loss of performance of the cathode was due to the increase of H2O2 concentration in the bulk solution induced laccase inhibition. 24 h stability experiments suggest that the use of O2-insensitive FAD-GDH as to obviate in situ peroxide production by GOx is effective. Open-circuit potentials of 0.66 ± 0.03 V and power densities of 122.2 ± 5.8 µW cm(-2) were observed for FAD-GDH/laccase biofuel cells.


Assuntos
Fontes de Energia Bioelétrica , Glucose 1-Desidrogenase/metabolismo , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Lacase/metabolismo , Biocatálise , Técnicas Eletroquímicas , Eletrodos , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Glucose/metabolismo , Peróxido de Hidrogênio/química , Oxirredução , Oxigênio/química , Oxigênio/metabolismo
18.
JACS Au ; 3(1): 124-130, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711103

RESUMO

Enzymatic electrocatalysis holds promise for new biotechnological approaches to produce chemical commodities such as molecular hydrogen (H2). However, typical inhibitory limitations include low stability and/or low electrocatalytic currents (low product yields). Here we report a facile single-step electrode preparation procedure using indium-tin oxide nanoparticles on carbon electrodes. The subsequent immobilization of a model [FeFe]-hydrogenase from Clostridium pasteurianum ("CpI") on the functionalized carbon electrode permits comparatively large quantities of H2 to be produced in a stable manner. Specifically, we observe current densities of >8 mA/cm2 at -0.8 V vs the standard hydrogen electrode (SHE) by direct electron transfer (DET) from cyclic voltammetry, with an onset potential for H2 production close to its standard potential at pH 7 (approximately -0.4 V vs. SHE). Importantly, hydrogenase-modified electrodes show high stability retaining ∼92% of their electrocatalytic current after 120 h of continuous potentiostatic H2 production at -0.6 V vs. SHE; gas chromatography confirmed ∼100% Faradaic efficiency. As the bioelectrode preparation method balances simplicity, performance, and stability, it paves the way for DET on other electroenzymatic reactions as well as semiartificial photosynthesis.

19.
FEBS J ; 290(16): 4107-4125, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074156

RESUMO

A major electron carrier involved in energy and carbon metabolism in the acetogenic model organism Thermoanaerobacter kivui is ferredoxin, an iron-sulfur-containing, electron-transferring protein. Here, we show that the genome of T. kivui encodes four putative ferredoxin-like proteins (TKV_c09620, TKV_c16450, TKV_c10420 and TKV_c19530). All four genes were cloned, a His-tag encoding sequence was added and the proteins were produced from a plasmid in T. kivui. The purified proteins had an absorption peak at 430 nm typical for ferredoxins. The determined iron-sulfur content is consistent with the presence of two predicted [4Fe4S] clusters in TKV_c09620 and TKV_c19530 or one predicted [4Fe4S] cluster in TKV_c16450 and TKV_c10420 respectively. The reduction potential (Em ) for TKV_c09620, TKV_c16450, TKV_c10420 and TKV_c19530 was determined to be -386 ± 4 mV, -386 ± 2 mV, -559 ± 10 mV and -557 ± 3 mV, respectively. TKV_c09620 and TKV_c16450 served as electron carriers for different oxidoreductases from T. kivui. Deletion of the ferredoxin genes led to only a slight reduction of growth on pyruvate or autotrophically on H2 + CO2 . Transcriptional analysis revealed that TKV_c09620 was upregulated in a ΔTKV_c16450 mutant and vice versa TKV_c16450 in a ΔTKV_c09620 mutant, indicating that TKV_c09620 and TKV_c16450 can replace each other. In sum, our data are consistent with the hypothesis that TKV_c09620 and TKV_c16450 are ferredoxins involved in autotrophic and heterotrophic metabolism of T. kivui.


Assuntos
Ferredoxinas , Thermoanaerobacter , Thermoanaerobacter/química , Thermoanaerobacter/genética , Thermoanaerobacter/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Genoma Bacteriano/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espectroscopia Fotoeletrônica
20.
JACS Au ; 3(11): 2993-2999, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034976

RESUMO

The biological N2-fixation process is catalyzed exclusively by metallocofactor-containing nitrogenases. Structural and spectroscopic studies highlighted the presence of an additional mononuclear metal-binding (MMB) site, which can coordinate Fe in addition to the two metallocofactors required for the reaction. This MMB site is located 15-Å from the active site, at the interface of two NifK subunits. The enigmatic function of the MMB site and its implications for metallocofactor installation, catalysis, electron transfer, or structural stability are investigated in this work. The axial ligands coordinating the additional Fe are almost universally conserved in Mo-nitrogenases, but a detailed observation of the available structures indicates a variation in occupancy or a metal substitution. A nitrogenase variant in which the MMB is disrupted was generated and characterized by X-ray crystallography, biochemistry, and enzymology. The crystal structure refined to 1.55-Å revealed an unambiguous loss of the metal site, also confirmed by an absence of anomalous signal for Fe. The position of the surrounding side chains and the overall architecture are superposable with the wild-type structure. Accordingly, the biochemical and enzymatic properties of the variant are similar to those of the wild-type nitrogenase, indicating that the MMB does not impact nitrogenase's activity and stability in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA