Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.171
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105607, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159864

RESUMO

A mouse model was used to investigate the role of the hyaluronidase, transmembrane protein 2 (TMEM2), on the progression of Graves' orbital (GO) disease. We established a GO mouse model through immunization with a plasmid expressing the thyroid stimulating hormone receptor. Orbital fibroblasts (OFs) were subsequently isolated from both GO and non-GO mice for comprehensive in vitro analyses. The expression of TMEM2 was assessed using qRT-PCR, Western blot and immunohistochemistry in vivo. Disease pathology was evaluated by H&E staining and Masson's trichrome staining in GO mouse tissues. Our investigation revealed a notable reduction in TMEM2 expression in GO mouse orbital tissues. Through overexpression and knockdown assays, we demonstrated that TMEM2 suppresses inflammatory cytokines and reactive oxygen species production. TMEM2 also inhibits the formation of lipid droplets in OFs and the expression of adipogenic factors. Further incorporating Gene Set Enrichment Analysis of relevant GEO datasets and subsequent in vitro cell experiments, robustly confirmed that TMEM2 overexpression was associated with a pronounced upregulation of the JAK/STAT signaling pathway. In vivo, TMEM2 overexpression reduced inflammatory cell infiltration, adipogenesis, and fibrosis in orbital tissues. These findings highlight the varied regulatory role of TMEM2 in GO pathogenesis. Our study reveals that TMEM2 plays a crucial role in mitigating inflammation, suppressing adipogenesis, and reducing fibrosis in GO. TMEM2 has potential as a therapeutic target and biomarker for treating or alleviating GO. These findings advance our understanding of GO pathophysiology and provide opportunities for targeted interventions to modulate TMEM2 for therapeutic purposes.


Assuntos
Oftalmopatia de Graves , Transdução de Sinais , Animais , Camundongos , Adipogenia , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/metabolismo , Camundongos Endogâmicos , Espécies Reativas de Oxigênio/metabolismo
2.
PLoS Pathog ; 19(8): e1011577, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603540

RESUMO

Circular RNAs (circRNAs) are involved in various biological roles, including viral infection and antiviral immune responses. To identify influenza A virus (IAV) infection-related circRNAs, we compared the circRNA profiles of A549 cells upon IAV infection. We found that circVAMP3 is substantially upregulated after IAV infection or interferon (IFN) stimulation. Furthermore, IAV and IFN-ß induced the expression of QKI-5, which promoted the biogenesis of circVAMP3. Overexpression of circVAMP3 inhibited IAV replication, while circVAMP3 knockdown promoted viral replication, suggesting that circVAMP3 restricts IAV replication. We verified the effect of circVAMP3 on viral infection in mice and found that circVAMP3 restricted IAV replication and pathogenesis in vivo. We also found that circVAMP3 functions as a decoy to the viral proteins nucleoprotein (NP) and nonstructural protein 1 (NS1). Mechanistically, circVAMP3 interfered with viral ribonucleoprotein complex activity by reducing the interaction of NP with polymerase basic 1, polymerase basic 2, or vRNA and restored the activation of IFN-ß by alleviating the inhibitory effect of NS1 to RIG-I or TRIM25. Our study provides new insights into the roles of circRNAs, both in directly inhibiting virus replication and in restoring innate immunity against IAV infection.


Assuntos
Influenza Humana , RNA Circular , Proteína 3 Associada à Membrana da Vesícula , Animais , Humanos , Camundongos , Influenza Humana/genética , Interferons , Nucleoproteínas , Nucleotidiltransferases , RNA Circular/genética , Proteína 3 Associada à Membrana da Vesícula/genética
3.
Mol Ther ; 32(5): 1510-1525, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454605

RESUMO

The acute respiratory virus infection can induce uncontrolled inflammatory responses, such as cytokine storm and viral pneumonia, which are the major causes of death in clinical cases. Cyclophilin A (CypA) is mainly distributed in the cytoplasm of resting cells and released into the extracellular space in response to inflammatory stimuli. Extracellular CypA (eCypA) is upregulated and promotes inflammatory response in severe COVID-19 patients. However, how eCypA promotes virus-induced inflammatory response remains elusive. Here, we observe that eCypA is induced by influenza A and B viruses and SARS-CoV-2 in cells, mice, or patients. Anti-CypA mAb reduces pro-inflammatory cytokines production, leukocytes infiltration, and lung injury in virus-infected mice. Mechanistically, eCypA binding to integrin ß2 triggers integrin activation, thereby facilitating leukocyte trafficking and cytokines production via the focal adhesion kinase (FAK)/GTPase and FAK/ERK/P65 pathways, respectively. These functions are suppressed by the anti-CypA mAb that specifically blocks eCypA-integrin ß2 interaction. Overall, our findings reveal that eCypA-integrin ß2 signaling mediates virus-induced inflammatory response, indicating that eCypA is a potential target for antibody therapy against viral pneumonia.


Assuntos
COVID-19 , Ciclofilina A , Ciclofilina A/metabolismo , Animais , Humanos , Camundongos , COVID-19/metabolismo , COVID-19/virologia , COVID-19/imunologia , Antígenos CD18/metabolismo , SARS-CoV-2 , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Pneumonia Viral/metabolismo , Pneumonia Viral/imunologia , Citocinas/metabolismo , Anticorpos Monoclonais/farmacologia , Transdução de Sinais , Vírus da Influenza A , Modelos Animais de Doenças
4.
Small ; 20(10): e2305977, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919095

RESUMO

Additive engineering is widely utilized to optimize film morphology in active layers of organic solar cells (OSCs). However, the role of additive in film formation and adjustment of film morphology remains unclear at the molecular level. Here, taking high-efficiency Y6-based OSC films as an example, this work thus employs all-atom molecular-dynamics simulations to investigate how introduction of additives with different π-conjugation degree thermodynamically and dynamically impacts nanoscale molecular packings. These results demonstrate that the van der Waals (vdW) interactions of the Y6 end groups with the studied additives are strongest. The larger the π-conjugation degree of the additive molecules, the stronger the vdW interactions between additive and Y6 molecules. Due to such vdW interactions, the π-conjugated additive molecules insert into the neighboring Y6 molecules, thus opening more space for relaxation of Y6 molecules to trigger more ordered packing. Increasing the interactions between the Y6 end groups and the additive molecules not only accelerates formation of the Y6 ordered packing, but also induces shorter Y6-intermolecular distances. This work reveals the fundamental molecular-level mechanism behind film formation and adjustment of film morphology via additive engineering, providing an insight into molecular design of additives toward optimizing morphologies of organic semiconductor films.

5.
Small ; 20(2): e2305317, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670223

RESUMO

Stimuli-responsive ion nanochannels have attracted considerable attention in various fields because of their remote controllability of ionic transportation. For photoresponsive ion nanochannels, however, achieving precise regulation of ion conductivity is still challenging, primarily due to the difficulty of programmable structural changes in confined environments. Moreover, the relationship between noncontact photo-stimulation in nanoscale and light-induced ion conductivity has not been well understood. In this work, a versatile design for fabricating guard cell-inspired photoswitchable ion channels is presented by infiltrating azobenzene-cross-linked polymer (AAZO-PDAC) into nanoporous anodic aluminum oxide (AAO) membranes. The azobenzene-cross-linked polymer is formed by azobenzene chromophore (AAZO)-cross-linked poly(diallyldimethylammonium chloride) (PDAC) with electrostatic interactions. Under UV irradiation, the trans-AAZO isomerizes to the cis-AAZO, causing the volume compression of the polymer network, whereas, in darkness, the cis-AAZO reverts to the trans-AAZO, leading to the recovery of the structure. Consequently, the resultant nanopore sizes can be manipulated by the photomechanical effect of the AAZO-PDAC polymers. By adding ionic liquids, the ion conductivity of the light-driven ion nanochannels can be controlled with good repeatability and fast responses (within seconds) in multiple cycles. The ion channels have promising potential in the applications of biomimetic materials, sensors, and biomedical sciences.

6.
Mol Carcinog ; 63(8): 1449-1466, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801356

RESUMO

Curcumin has been shown to have antitumor properties, but its low potency and bioavailability has limited its clinical application. We designed a novel curcuminoid, [1-propyl-3,5-bis(2-bromobenzylidene)-4-piperidinone] (PBPD), which has higher antitumor strength and improves bioavailability. Cell counting kit-8 was used to detect cell activity. Transwell assay was used to detect cell invasion and migration ability. Western blot and quantitative polymerase chain reaction were used to detect protein levels and their messenger RNA expression. Immunofluorescence was used to detect the protein location. PBPD significantly inhibited the proliferation of cervical cancer cells, with an IC50 value of 4.16 µM for Hela cells and 3.78 µM for SiHa cells, leading to the induction of cuproptosis. Transcriptome sequencing analysis revealed that PBPD significantly inhibited the Notch1/Recombination Signal Binding Protein for Immunoglobulin kappa J Region (RBP-J) and nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathways while upregulating ferredoxin 1 (FDX1) expression. Knockdown of Notch1 or RBP-J significantly inhibited NRF2 expression and upregulated FDX1 expression, leading to the inhibition of nicotinamide adenine dinucleotide phosphate activity and the induction of oxidative stress, which in turn activated endoplasmic reticulum stress and induced cell death. The overexpression of Notch1 or RBP-J resulted in the enrichment of RBP-J within the NRF2 promoter region, thereby stimulating NRF2 transcription. NRF2 knockdown resulted in increase in FDX1 expression, leading to cuproptosis. In addition, PBPD inhibited the acidification of tumor niche and reduced cell metabolism to inhibit cervical cancer cell invasion and migration. In conclusion, PBPD significantly inhibits the proliferation, invasion, and migration of cervical cancer cells and may be a novel potential drug candidate for treatment of cervical cancer.


Assuntos
Proliferação de Células , Estresse do Retículo Endoplasmático , Fator 2 Relacionado a NF-E2 , Receptor Notch1 , Transdução de Sinais , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Receptor Notch1/metabolismo , Receptor Notch1/genética , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Curcumina/farmacologia , Curcumina/análogos & derivados , Linhagem Celular Tumoral , Animais , Células HeLa , Camundongos
7.
RNA ; 28(2): 177-193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34759006

RESUMO

The commitment to replicate the RNA genome of flaviviruses without a primer involves RNA-protein interactions that have been shown to include the recognition of the stem-loop A (SLA) in the 5' untranslated region (UTR) by the nonstructural protein NS5. We show that DENV2 NS5 arginine 888, located within the carboxy-terminal 18 residues, is completely conserved in all flaviviruses and interacts specifically with the top-loop of 3'SL in the 3'UTR which contains the pentanucleotide 5'-CACAG-3' previously shown to be critical for flavivirus RNA replication. We present virological and biochemical data showing the importance of this Arg 888 in virus viability and de novo initiation of RNA polymerase activity in vitro. Based on our binding studies, we hypothesize that ternary complex formation of NS5 with 3'SL, followed by dimerization, leads to the formation of the de novo initiation complex that could be regulated by the reversible zipping and unzipping of cis-acting RNA elements.


Assuntos
Vírus da Dengue/fisiologia , RNA/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Regiões 3' não Traduzidas , Animais , Arginina/química , Linhagem Celular , Sequência Conservada , Cricetinae , Cricetulus , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Dengue/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
8.
Cell Immunol ; 401-402: 104838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38810591

RESUMO

BACKGROUND: The NOD-like receptor protein 3 (NLRP3) mediated pyroptosis of macrophages is closely associated with liver ischemia reperfusion injury (IRI). As a covalent inhibitor of NLRP3, Oridonin (Ori), has strong anti-inflammasome effect, but its effect and mechanisms for liver IRI are still unknown. METHODS: Mice and liver macrophages were treated with Ori, respectively. Co-IP and LC-MS/MS analysis of the interaction between PKM2 and NLRP3 in macrophages. Liver damage was detected using H&E staining. Pyroptosis was detected by WB, TEM, and ELISA. RESULTS: Ori ameliorated liver macrophage pyroptosis and liver IRI. Mechanistically, Ori inhibited the interaction between pyruvate kinase M2 isoform (PKM2) and NLRP3 in hypoxia/reoxygenation(H/R)-induced macrophages, while the inhibition of PKM2/NLRP3 reduced liver macrophage pyroptosis and liver IRI. CONCLUSION: Ori exerted protective effects on liver IRI via suppressing PKM2/NLRP3-mediated liver macrophage pyroptosis, which might become a potential therapeutic target in the clinic.


Assuntos
Diterpenos do Tipo Caurano , Fígado , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Traumatismo por Reperfusão , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Masculino , Piruvato Quinase/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Hepatopatias/metabolismo , Hepatopatias/tratamento farmacológico
10.
BMC Pediatr ; 24(1): 205, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519890

RESUMO

BACKGROUND: Neuroblastoma (NB), a type of solid tumor in children, has a poor prognosis. Few blood biomarkers can accurately predict the prognosis, including recurrence and survival, in children with NB. In this study, we found that the serum total cholesterol (Tchol) level was associated with the prognosis of patients through a retrospective study. METHODS: Multivariate Cox regression model was used to identify the independent risk factors in the children with NB. Kaplan-Meier method was used to analyze the correlation between the common biomarkers, including the serum Tchol level, and the prognosis of the patients. ROC curves were used to predict the accuracy of the International Neuroblastoma Staging System (INSS) stage and Children's Oncology Group (COG) risk stratification after adding the serum Tchol level. RESULTS: Compared with the other patients, serum Tchol level was significantly increased in the relapsed and died patients (P < 0.05). Subsequently, serum Tchol level was found as an independent risk factor to affect the outcome of patients (P < 0.05). Finally, we added serum Tchol level into traditional stage and risk classification system to form the new INSS stage and COG risk classification system. It was found that the areas under the ROC curve (AUC) of recurrence-free survival in the new INSS stage and COG risk classification system were increased to 0.691 (95%CI: 0.535-0.847) and 0.748 (95%CI: 0.622-0.874), respectively. Moreover, the AUC areas of overall survival in the new INSS stage and COG risk classification system were increased to 0.722 (95%CI: 0.561-0.883) and 0.668 (95%CI: 0.496-0.819), respectively. CONCLUSION: We found that serum Tchol level, a clinical biomarker, is a risk factor for recurrence and death among the children with NB. The serum Tchol level could significantly increase the accuracy of the prediction for NB prognosis.


Assuntos
Neuroblastoma , Criança , Humanos , Estudos Retrospectivos , Prognóstico , Neuroblastoma/diagnóstico , Biomarcadores , Colesterol
11.
Ren Fail ; 46(2): 2374451, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38967166

RESUMO

BACKGROUND: The primary objective was to examine the association between the lactate/albumin ratio (LAR) and the prognosis of patients with acute kidney injury (AKI) undergoing continuous renal replacement therapy (CRRT). METHODS: Utilizing the Medical Information Mart for Intensive Care IV (MIMIC-IV, v2.0) database, we categorized 703 adult AKI patients undergoing CRRT into survival and non-survival groups based on 28-day mortality. Patients were further grouped by LAR tertiles: low (< 0.692), moderate (0.692-1.641), and high (> 1.641). Restricted cubic splines (RCS), Least Absolute Shrinkage and Selection Operator (LASSO) regression, inverse probability treatment weighting (IPTW), and Kaplan-Meier curves were employed. RESULTS: In our study, the patients had a mortality rate of 50.07% within 28 days and 62.87% within 360 days. RCS analysis revealed a non-linear correlation between LAR and the risk of mortality at both 28 and 360 days. Cox regression analysis, which was adjusted for nine variables identified by LASSO, confirmed that a high LAR (>1.641) served as an independent predictor of mortality at these specific time points (p < 0.05) in AKI patients who were receiving CRRT. These findings remained consistent even after IPTW adjustment, thereby ensuring a reliable and robust outcome. Kaplan-Meier survival curves exhibited a gradual decline in cumulative survival rates at both 28 and 360 days as the LAR values increased (log-rank test, χ2 = 48.630, p < 0.001; χ2 = 33.530, p < 0.001). CONCLUSION: A high LAR (>1.641) was found to be an autonomous predictor of mortality at both 28 and 360 days in critically ill patients with AKI undergoing CRRT.


Assuntos
Injúria Renal Aguda , Terapia de Substituição Renal Contínua , Estado Terminal , Ácido Láctico , Humanos , Injúria Renal Aguda/sangue , Injúria Renal Aguda/terapia , Injúria Renal Aguda/mortalidade , Feminino , Masculino , Estado Terminal/mortalidade , Pessoa de Meia-Idade , Prognóstico , Idoso , Ácido Láctico/sangue , Estimativa de Kaplan-Meier , Unidades de Terapia Intensiva/estatística & dados numéricos , Estudos Retrospectivos , Modelos de Riscos Proporcionais , Albumina Sérica/análise , Albumina Sérica/metabolismo
12.
Clin Oral Investig ; 28(8): 427, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992326

RESUMO

OBJECTIVES: The aim of this study was to explore inflammation of soft tissue around the upper third molar as a prevalent cause of limited mouth opening, identify the clinical and radiographic features, and summarize the therapeutic effectiveness of tooth extraction. MATERIALS AND METHODS: A retrospective analysis of data from 264 patients with limited mouth opening over the last five years was performed. RESULTS: Among the 264 patients, 24 (9.1%) had inflammation of the soft tissue around the upper third molar, which was the second most common cause of limited mouth opening. Twenty-one of the twenty-four affected patients, with an average mouth opening of 19.1 ± 7.6 mm, underwent upper third molar extraction. Gingival tenderness around the upper third molar or maxillary tuberosity mucosa was a characteristic clinical manifestation (p < 0.05). The characteristic features on maxillofacial CT included soft tissue swelling around the upper third molar and gap narrowing between the maxillary nodules and the mandibular ascending branch. Post extraction, the average mouth opening increased to 31.4 ± 4.9 mm (p < 0.05), and follow-up CT demonstrated regression of the inflammatory soft tissue around the upper third molar. CONCLUSIONS: Inflammation of soft tissue around the upper third molar is a common cause of limited mouth opening. Symptoms of pain associated with the upper third molar and distinctive findings on enhanced maxillofacial CT scans are crucial for diagnosis. Upper third molar extraction yields favorable therapeutic outcomes. CLINICAL RELEVANCE: Inflammation of the soft tissue around the maxillary third molar commonly causes limited mouth opening, but this phenomenon has long been overlooked. Clarifying this etiology can reduce the number of misdiagnosed patients with restricted mouth opening and enable more efficient treatment for patients.


Assuntos
Dente Serotino , Extração Dentária , Humanos , Dente Serotino/cirurgia , Dente Serotino/diagnóstico por imagem , Feminino , Masculino , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Inflamação , Adolescente
13.
Cancer Sci ; 114(8): 3101-3113, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36951402

RESUMO

AKR7A3 is a member of the aldo-keto reductase (AKR) protein family, whose primary purpose is to reduce aldehydes and ketones to generate primary and secondary alcohols. It has been reported that AKR7A3 is downregulated in pancreatic cancer (PC). However, the mechanism underlying the effects of AKR7A3 in PC remains largely unclarified. Here, we explored the biological function, molecular mechanism and clinical relevance of AKR7A3 in pancreatic ductal adenocarcinoma (PDAC). AKR7A3 expression was downregulated in PDAC compared with adjacent normal tissues, and the lower AKR7A3 expression was related to poor prognosis. In addition, our results demonstrated that AKR7A3 could be a potential diagnostic marker for PDAC, especially in the early stages. Knockdown of AKR7A3 promoted PDAC progression and chemoresistance, while inhibiting autophagy flux. Mechanistically, AKR7A3 affected the metastasis, autophagy, and chemoresistance of PDAC by regulating PHGDH. Overall, the present study suggests that AKR7A3 inhibits PDAC progression by regulating PHGDH-induced autophagy. In addition, AKR7A3 inhibits chemoresistance via regulating PHGDH and may serve as a new therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Prognóstico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pancreáticas
14.
Am J Transplant ; 23(3): 336-352, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695693

RESUMO

Acute rejection (AR) is an important factor that leads to poor prognosis after liver transplantation (LT). Macrophage M1-polarization is an important mechanism in AR development. MicroRNAs play vital roles in disease regulation; however, their effects on macrophages and AR remain unclear. In this study, rat models of AR were established following LT, and macrophages and peripheral blood mononuclear cells were isolated from rats and humans, respectively. We found miR-449a expression to be significantly reduced in macrophages and peripheral blood mononuclear cells. Overexpression of miR-449a not only inhibited the M1-polarization of macrophages in vitro but also improved the AR of transplant in vivo. The mechanism involved inhibiting the noncanonical nuclear factor-kappaB (NF-κB) pathway. We identified procollagen-lysine1,2-oxoglutarate5-dioxygenase 1 (PLOD1) as a target gene of miR-449a, which could reverse miR-449a's inhibition of macrophage M1-polarization, amelioration of AR, and inhibition of the NF-κB pathway. Overall, miR-449a inhibited the NF-κB pathway in macrophages through PLOD1 and also inhibited the M1-polarization of macrophages, thus attenuating AR after LT. In conclusion, miR-449a and PLOD1 may be new targets for the prevention and mitigation of AR.


Assuntos
Transplante de Fígado , MicroRNAs , Animais , Humanos , Ratos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , NF-kappa B/metabolismo , Pró-Colágeno/metabolismo , Pró-Colágeno/farmacologia
15.
Funct Integr Genomics ; 23(3): 274, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574510

RESUMO

The main aim of the current work was to explore the differential metabolites and differentially expressed genes of longissimus dorsi muscle (LDM) between castrated and uncastrated fattening male South Sichuan black goats (Capra hircus). Then, the key genes regulating important differential metabolites (DMs) in castrated male goats were observed by integrated metabolomics and transcriptomics analyses. In addition, we evaluated the effects of castration on blood constituents, dressing percentage, and water holding capacity of LDM in male black goats. The results showed that the concentrations of alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were significantly increased and testosterone was significantly decreased in castrated male goats compared with the uncastrated male goats, while dressing percentage of black goats and water holding capacity of longissimus dorsi muscle were not significant differences. Through metabolomics and transcriptomics analyses, 23 important KEGG pathways, 13 important DMs, 32 important differentially expressed genes (DEGs), and 13 key genes related to the "Metabolism" and "Organismal systems" pathways were screened. Lipid accumulation may be elevated in the blood of fattening South Sichuan black goats after castration. Castration might play a positive role in energy provision, intercellular signaling, muscle function, softening of meat, disease reduction, and anti-oxidation of LDM. P4HA2, AKR1B1, GPT2, L2HGDH, ENSCHIG00000021660, ENSCHIG00000023861, DGAT2, ULK1, SLC38A3, PLA2G4A, SLC6A1, ENSCHIG00000026624, and ND2 might be the key genes regulating important DMs in the KEGG pathways related to "Metabolism" and "Organismal systems" of castrated male goats compared with the uncastrated male goats.


Assuntos
Cabras , Transcriptoma , Animais , Masculino , Cabras/genética , Metabolômica , Músculo Esquelético/metabolismo , Colesterol/metabolismo
16.
Anal Chem ; 95(2): 1755-1763, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36596643

RESUMO

Mustard gas [sulfur mustard (SM)] and phosgene are the most frequently used chemical warfare agents (CWAs), which pose a serious threat to human health and national security, and their rapid and accurate detection is essential to respond to terrorist attacks and industrial accidents. Herein, we developed a fluorescent probe with o-hydroxythioketone as two sensing sites, AQso, which can detect and distinguish mustard gas and phosgene. The dual-sensing-site probe AQso reacts with mustard gas to form a cyclic product with high sensitivity [limit of detection (LOD) = 70 nM] and is highly selective to SM over phosgene, SM analogues, active alkylhalides, acylhalides, and nerve agent mimics, in ethanol solutions. When encountering phosgene, AQso rapidly converts to cyclic carbonate, which is sensitive (LOD = 14 nM) and highly selective. Their sensing mechanisms of AQso to mustard gas and phosgene were well demonstrated by separation and characterization of the sensing products. Furthermore, a facile test strip with the probe was prepared to distinguish 2-chloroethyl ethyl sulfide (CEES) and phosgene in the gas phase by different fluorescence colors and response rates. Not using the complicated instrument, the qualitative and quantitative detection of CEES or phosgene can be achieved only by measuring the red-green-blue (RGB) channel intensity of the test strip after being exposed to CEES or phosgene gas by the smartphone with an RGB color application.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Fosgênio , Humanos , Fosgênio/química , Corantes Fluorescentes/química
17.
Chemistry ; 29(43): e202301012, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37173870

RESUMO

Over the past few decades, stimuli-responsive materials have been widely applied to porous surfaces. Permeability and conductivity control of ions confined in nanochannels modified with stimuli-responsive materials, however, have been less investigated. In this work, the permeability and conductivity control of ions confined in nanochannels of anodic aluminum oxide (AAO) templates modified with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) brushes are demonstrated. By surface-initiated atom transfer radical polymerization (SI-ATRP), PNIPAM brushes are successfully grafted onto the hexagonally packed cylindrical nanopores of AAO templates. The surface hydrophilicities of the membranes can be reversibly altered because of the lower critical solution temperature (LCST) behavior of the PNIPAM polymer brushes. From electrochemical impedance spectroscopy (EIS) analysis, the temperature-gating behaviors of the AAO-g-PNIPAM membranes exhibit larger impedance changes than those of the pure AAO membranes at higher temperatures because of the aggregation of the grafted PNIPAM chains. The reversible surface properties caused by the extended and collapsed states of the polymer chains are also demonstrated by dye release tests. The smart thermo-gated and ion-controlled nanoporous membranes are suitable for future smart membrane applications.

18.
Soft Matter ; 20(1): 255-265, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38086671

RESUMO

It is of great research significance to prepare a new shear thickening fluid (STF) with a simple process, remarkable thickening effect and excellent impact resistance from the properties of the particles. Inspired by the shear thickening mechanism, nano-silica particle clusters (SPC) with different morphological structures were prepared by the reaction of amino-modified silica with polyethylene glycol diglycidyl ether (PEGDGE), and the structure models of particle clusters were designed through theoretical analysis. The structure of SPC was affected by the degree of amination modification and the molecular weight of PEGDGE, which was analyzed by DLS and TEM. The shear thickening behavior of the fluid was evaluated by steady-state rheology and dynamic-state rheology analysis. The shear thickening behavior of the fluid composed of SPC also changed greatly with the influence of the degree of amination modification and the molecular weight of PEGDGE. In addition, compared with the STF contained original silica, the STF contained SPC could produce a faster and stronger shear thickening response. Therefore, silica particle clusters are not only a promising candidate for the preparation of high-performance shear thickening fluids, but can also be better applied to industrial and scientific fields such as impact protection and shock absorption.

19.
Macromol Rapid Commun ; 44(2): e2200547, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208074

RESUMO

Untethered small actuators have drawn tremendous interest owing to their reversibility, flexibility, and widespread applications in various fields. For polymer actuators, however, it is still challenging to achieve programmable structural changes under different stimuli caused by the intractability and single-stimulus responses of most polymer materials. Herein, multi-stimuli-responsive polymer actuators that can respond to light and solvent via structural changes are developed. The actuators are based on bilayer films of polydimethylsiloxane (PDMS) and azobenzene chromophore (AAZO)-crosslinked poly(diallyldimethylammonium chloride) (PDAC). Upon UV light irradiation, the AAZO undergoes trans-cis-trans photoisomerization, causing the bending of the bilayer films. When the UV light is off, a shape recovery toward an opposite direction occurs spontaneously. The reversible deformation can be repeated at least 20 cycles. Upon solvent vapor annealing, one of the bilayer films can be selectively swollen, causing the bending of the bilayer films with the directions controlled by the solvent vapors. The effects of different parameters, such as the weight ratios of AAZO and film thicknesses, on the bending angles and curvatures of the polymer films are also analyzed. The results demonstrate that multi-stimuli-responsive actuators with fast responses and high reproducibility can be fulfilled.


Assuntos
Polímeros , Polímeros Responsivos a Estímulos , Polímeros/química , Solventes , Reprodutibilidade dos Testes , Raios Ultravioleta
20.
Int J Hyperthermia ; 40(1): 2241689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574198

RESUMO

OBJECTIVE: To compare the efficacy and safety of hyperthermic intrathoracic/intraperitoneal chemotherapy versus conventional intrapleural/intraperitoneal chemotherapy in the treatment of malignant pleural or peritoneal effusion. METHODS: A randomized clinical trial was carried out in 8 cancer centers across China. Patients with malignant pleural or peritoneal effusion were randomly assigned to the study group or control group. Patients in the study group were treated with cisplatin-based hyperthermic intrathoracic chemotherapy (HITHOC) or hyperthermic intraperitoneal chemotherapy (HIPEC), while the control group was treated with conventional intrapleural or intraperitoneal chemotherapy using same chemotherapeutic regime as the study group. The objective response rate (ORR) was analyzed as primary outcome. Quality-of-life (QOL) score was recorded as secondary outcome using the questionnaire 30 (QLQ-C30) of the European Organization for Research and Treatment of Cancer (EORTC). The efficacy and safety of the two treatments were compared. RESULTS: Total 135 patients were recruited and randomized in this study, with 67 patients in the study group and 68 patients in the control group. The ORR in the study group (80.70%) was significantly higher than that in the control group (31.03%, p < 0.001). However, neither changes of QOL scores, nor incidence rates of adverse events were significantly different between the two groups (p = 0.076 and 0.197, respectively). CONCLUSION: Efficacy of HITHOC or HIPEC is superior to that of conventional modality for the treatment of malignant effusion with comparable side effects.


Assuntos
Hipertermia Induzida , Derrame Pleural Maligno , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Terapia Combinada , Qualidade de Vida , Cisplatino/uso terapêutico , Derrame Pleural Maligno/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA