Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Biotechnol Bioeng ; 121(4): 1284-1297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240126

RESUMO

Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.


Assuntos
Anticorpos Monoclonais , Proteômica , Cricetinae , Animais , Cricetulus , Proteômica/métodos , Células CHO , Anticorpos Monoclonais/química , Cromatografia em Gel , Proteína Estafilocócica A/química
2.
Biotechnol Bioeng ; 121(1): 291-305, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877536

RESUMO

Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines. The results show considerable variability in HCP identities in the processing steps but extensive commonality in the identities and quantities of the most abundant HCPs in the harvests for different processes. Analysis of HCP abundance in the harvests shows a likely relationship between abundance and the reproducibility of quantification measurements and suggests that some groups of HCPs may hinder the characterization. Quantitative monitoring of HCPs persisting through purification steps coupled with the findings from the harvest analysis suggest that multiple factors, including HCP abundance and mAb-HCP interactions, can contribute to the persistence of individual HCPs and the identification of groups of common, persistent HCPs in mAb manufacturing.


Assuntos
Anticorpos Monoclonais , Cricetinae , Animais , Humanos , Anticorpos Monoclonais/química , Reprodutibilidade dos Testes , Cricetulus , Espectrometria de Massas , Células CHO
3.
Biotechnol Bioeng ; 120(4): 1068-1080, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36585356

RESUMO

In the production of biopharmaceuticals such as monoclonal antibodies (mAbs) and vaccines, the residual amounts of host-cell proteins (HCPs) are among the critical quality attributes. In addition to overall HCP levels, individual HCPs may elude purification, potentially causing issues in product stability or patient safety. Such HCP persistence has been attributed mainly to biophysical interactions between individual HCPs and the product, resin media, or residual chromatin particles. Based on measurements on process streams from seven mAb processes, we have found that HCPs in aggregates, not necessarily chromatin-derived, may play a significant role in the persistence of many HCPs. Such aggregates may also hinder accurate detection of HCPs using existing proteomics methods. The findings also highlight that certain HCPs may be difficult to remove because of their functional complementarity to the product; specifically, chaperones and other proteins involved in the unfolded protein response (UPR) are disproportionately present in the aggregates. The methods and findings described here expand our understanding of the origins and potential behavior of HCPs in cell-based biopharmaceutical processes and may be instrumental in improving existing techniques for HCP detection and clearance.


Assuntos
Produtos Biológicos , Agregados Proteicos , Cricetinae , Animais , Humanos , Cricetulus , Anticorpos Monoclonais , Proteômica/métodos , Células CHO
4.
Biotechnol Bioeng ; 119(8): 2221-2238, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35508759

RESUMO

The biomanufacturing industry is advancing toward continuous processes that will involve longer culture durations and older cell ages. These upstream trends may bring unforeseen challenges for downstream purification due to fluctuations in host cell protein (HCP) levels. To understand the extent of HCP expression instability exhibited by Chinese hamster ovary (CHO) cells over these time scales, an industry-wide consortium collaborated to develop a study to characterize age-dependent changes in HCP levels across 30, 60, and 90 cell doublings, representing a period of approximately 60 days. A monoclonal antibody (mAb)-producing cell line with bulk productivity up to 3 g/L in a bioreactor was aged in parallel with its parental CHO-K1 host. Subsequently, both cell types at each age were cultivated in an automated bioreactor system to generate harvested cell culture fluid (HCCF) for HCP analysis. More than 1500 HCPs were quantified using complementary proteomic techniques, two-dimensional electrophoresis (2DE) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). While up to 13% of proteins showed variable expression with age, more changes were observed when comparing between the two cell lines with up to 47% of HCPs differentially expressed. A small subset (50 HCPs) with age-dependent expression were previously reported to be problematic as high-risk and/or difficult-to-remove impurities; however, the vast majority of these were downregulated with age. Our findings suggest that HCP expression changes over this time scale may not be as dramatic and pose as great of a challenge to downstream processing as originally expected but that monitoring of variably expressed problematic HCPs remains critical.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Anticorpos Monoclonais/química , Reatores Biológicos , Células CHO , Cromatografia Líquida/métodos , Cricetinae , Cricetulus , Proteômica/métodos
5.
Biochem Biophys Res Commun ; 503(3): 1941-1948, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30072096

RESUMO

GDC-0084 is a novel and potent small-molecule PI3K-mTOR dual inhibitor. The present study examined its potential activity in cutaneous squamous cell carcinoma (cSCC) cells. Our results show that GDC-0084 treatment at nanomole concentrations potently inhibited survival and proliferation of established (A431, SCC-13 and SCL-1 lines) and primary human cSCC cells. GDC-0084 induced apoptosis activation and cell cycle arrest in the cSCC cells. It was more efficient than other known PI3K-Akt-mTOR inhibitors in killing cSCC cells, but was non-cytotoxic to the normal human skin fibroblasts/keratinocytes. In A431 cells and primary cSCC cells, GDC-0084 blocked phosphorylation of key PI3K-Akt-mTOR components, including p85, Akt, S6K1 and S6. GDC-0084 also inhibited DNA-PKcs activation in cSCC cells. Significantly, restoring DNA-PKcs activation by a constitutively active-DNA-PKcs (S2056D) partially inhibited GDC-0084-induced cell death and apoptosis in A431 cells. In vivo, GDC-0084 daily gavage potently inhibited A431 xenograft tumor growth in mice. In GDC-0084-treated tumor tissues PI3K-Akt-mTOR and DNA-PKcs activation were significantly inhibited. In summary, GDC-0084 inhibits human cSCC cell growth in vitro and in vivo through blocking PI3K-Akt-mTOR and DNA-PKcs signalings.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Oxazinas/farmacologia , Pirimidinas/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos SCID , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Oxazinas/química , Pirimidinas/química , Neoplasias Cutâneas/patologia , Relação Estrutura-Atividade
6.
Biotechnol Bioeng ; 114(5): 1006-1015, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27943242

RESUMO

While the majority of host cell protein (HCP) impurities are effectively removed in typical downstream purification processes, a small population of HCPs are particularly challenging. Previous studies have identified HCPs that are challenging for a variety of reasons. Lipoprotein lipase (LPL)-a Chinese hamster ovary (CHO) HCP that functions to hydrolyze esters in triglycerides-was one of ten HCPs identified in previous studies as being susceptible to retention in downstream processing. LPL may degrade polysorbate 80 (PS-80) and polysorbate 20 (PS-20) in final product formulations due to the structural similarity between polysorbates and triglycerides. In this work, recombinant LPL was found to have enzymatic activity against PS-80 and PS-20 in a range of solution conditions that are typical of mAb formulations. LPL knockout CHO cells were created with CRISPR and TALEN technologies and resulting cell culture harvest fluid demonstrated significantly reduced polysorbate degradation without significant impact on cell viability when compared to wild-type samples. Biotechnol. Bioeng. 2017;114: 1006-1015. © 2016 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/metabolismo , Técnicas de Inativação de Genes , Lipase Lipoproteica/genética , Engenharia Metabólica/métodos , Polissorbatos/química , Animais , Células CHO , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Estabilidade de Medicamentos , Escherichia coli/genética , Edição de Genes , Lipase Lipoproteica/metabolismo , Ácido Oleico/análise , Ácido Oleico/metabolismo , Polissorbatos/metabolismo
7.
Mol Pharm ; 13(12): 4191-4198, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934481

RESUMO

A human cell-based in vitro model that can accurately predict drug penetration into the brain as well as metrics to assess these in vitro models are valuable for the development of new therapeutics. Here, human induced pluripotent stem cells (hPSCs) are differentiated into a polarized monolayer that express blood-brain barrier (BBB)-specific proteins and have transendothelial electrical resistance (TEER) values greater than 2500 Ω·cm2. By assessing the permeabilities of several known drugs, a benchmarking system to evaluate brain permeability of drugs was established. Furthermore, relationships between TEER and permeability to both small and large molecules were established, demonstrating that different minimum TEER thresholds must be achieved to study the brain transport of these two classes of drugs. This work demonstrates that this hPSC-derived BBB model exhibits an in vivo-like phenotype, and the benchmarks established here are useful for assessing functionality of other in vitro BBB models.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Impedância Elétrica , Células-Tronco Pluripotentes Induzidas/metabolismo , Preparações Farmacêuticas/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Transporte Biológico , Encéfalo/citologia , Diferenciação Celular , Permeabilidade da Membrana Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Distribuição Tecidual
8.
Electrophoresis ; 36(15): 1690-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25884272

RESUMO

This work presents improved protease digestion conditions for membrane protein detection. The enzymatic digest of bacteriorhodopsin (BR), a model membrane protein with seven transmembrane domains (TMDs) was investigated. An initial in-gel digestion identified 17% BR sequence coverage, including part of the seventh TMD. To improve sequence coverage, BR digest was tested with different concentrations of RapiGest, methanol (MeOH) and SDS using either trypsin or chymotrypsin. Two improved conditions, 0.01% SDS or the combination of 10% MeOH and 0.01% RapiGest, were chosen. Trypsin digestions in both conditions achieved more than 40% BR sequence coverage compared to 0% using standard digestion conditions. Peptides detected from trypsin and chymotrypsin digestions in the same condition were combined to maximize sequence coverage. The same conditions were applied to a different membrane protein with one TMD, Selenoprotein S, and proteins from Escherichia coli. For Selenoprotein S, a higher sequence coverage, including a peptide from the TMD, was detected from the improved condition compared to the typical condition. The application of both improved conditions to a membrane protein fraction of Escherichia coli resulted in the identification of 309 (SDS) and 329 (MeOH/RapiGest) unique proteins of which 140/309 and 148/329 were membrane proteins.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteômica/métodos , Tripsina/metabolismo , Bacteriorodopsinas/análise , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/análise , Mapeamento de Peptídeos , Estrutura Terciária de Proteína
9.
Nat Chem Biol ; 9(3): 163-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23340338

RESUMO

Following DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the antiapoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique among BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules BAX and BAK. Structural investigations using NMR spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL. Wild-type PUMA or a PUMA mutant incapable of causing binding-induced unfolding of BCL-xL equivalently inhibited the antiapoptotic BCL-2 repertoire to sensitize for death receptor-activated apoptosis, but only wild-type PUMA promoted p53-dependent, DNA damage-induced apoptosis. Our data suggest that PUMA-induced partial unfolding of BCL-xL disrupts interactions between cytosolic p53 and BCL-xL, releasing the bound p53 to initiate apoptosis. We propose that regulated unfolding of BCL-xL provides a mechanism to promote PUMA-dependent signaling within the apoptotic pathways.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Desdobramento de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína bcl-X/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Humanos , Modelos Moleculares , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/química , Proteína bcl-X/química
10.
Biotechnol Prog ; 39(4): e3343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020359

RESUMO

Host-cell proteins (HCPs) and high molecular weight (HMW) species have historically been treated as independent classes of impurities in the downstream processing of monoclonal antibodies (mAbs), but recent indications suggest that they may be partially linked. We have explored this connection with a shotgun proteomic analysis of HMW impurities that were isolated from harvest cell culture fluid (HCCF) and protein A eluate using size-exclusion chromatography (SEC). As part of the proteomic analysis, a cross-digest study was performed in which samples were analyzed using both the standard and native digest techniques to enable a fair comparison between bioprocess pools. This comparison reveals that the HCP profiles of HCCF and protein A eluate overlap substantially more than previous work has suggested, because hundreds of HCPs are conserved in aggregates that may be up to ~50 nm in hydrodynamic radius and that persist through the protein A capture step. Quantitative SWATH proteomics suggests that the majority of the protein A eluate's HCP mass is found in such aggregates, and this is corroborated by ELISA measurements on SEC fractions. The SWATH data also show that intra-aggregate concentrations of individual HCPs are positively correlated between aggregates that were isolated from HCCF and protein A eluate, and species that have generally been considered difficult to remove tend to be more concentrated than their counterparts. These observations support prior hypotheses regarding aggregate-mediated HCP persistence through protein A chromatography and highlight the importance of this persistence mechanism.


Assuntos
Anticorpos Monoclonais , Proteômica , Cricetinae , Animais , Anticorpos Monoclonais/química , Cricetulus , Proteômica/métodos , Células CHO , Cromatografia Líquida/métodos , Proteína Estafilocócica A/química
11.
J Chromatogr A ; 1702: 464081, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37244165

RESUMO

Recent work has shown that aggregates in monoclonal antibody (mAb) solutions may be made up not just of mAb oligomers but can also harbor hundreds of host-cell proteins (HCPs), suggesting that aggregate persistence through downstream purification operations may be related to HCP clearance. We have examined this in a primary analysis of aggregate persistence through processing steps that are typically implemented for HCP reduction, demonstrating that the phenomenon is relevant to depth filtration, protein A chromatography and flow-through anion-exchange (AEX) polishing. Confocal laser scanning microscopy observations show that aggregates compete with the mAb to adsorb specifically in protein A chromatography and that this competitive interaction is integral to the efficacy of protein A washes. Column chromatography reveals that the protein A elution tail can have a relatively high concentration of aggregates, which corroborates analogous observations from recent HCP studies. Similar measurements in flow-through AEX chromatography show that relatively large aggregates that harbor HCPs and that persist into the protein A eluate can be retained to an extent that appears to depend primarily on the resin surface chemistry. The total aggregate mass fraction of both protein A eluate pools (∼ 2.4 - 3.6%) and AEX flow-through fractions (∼ 1.5 - 3.2%) correlates generally with HCP concentrations measured using enzyme-linked immunosorbent assay (ELISA) as well as the number of HCPs that may be identified in proteomic analysis. This suggests that quantification of the aggregate mass fraction may serve as a convenient albeit imperfect surrogate for informing early process development decisions regarding HCP clearance strategies.


Assuntos
Cromatografia , Proteômica , Cricetinae , Animais , Cricetulus , Proteômica/métodos , Células CHO , Anticorpos Monoclonais/química , Proteína Estafilocócica A/química , Ânions
12.
J Immunol ; 184(8): 4228-35, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20237289

RESUMO

The Tec family tyrosine kinase (Itk), is a key component of the TCR signaling pathway. Biochemical studies have shown that Itk activation requires recruitment of Itk to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. However, the regulation of Itk enzymatic activity by Itk domain interactions is not yet well understood. In this study, we show that full-length Itk self-associates in an intermolecular fashion. Using this information, we have designed an Itk variant that exhibits reduced self-association but maintains normal binding to exogenous ligands via each of its regulatory domains. When expressed in insect cells, the Itk substrate phospholipase Cgamma1 is phosphorylated more efficiently by the Itk variant than by wild-type Itk. Furthermore, expression of the Itk variant in primary murine T cells induced higher ERK activation and increased calcium flux following TCR stimulation compared with that of wild-type Itk. Our results indicate that the Tec kinase Itk is negatively regulated by intermolecular clustering and that disruption of this clustering leads to increased Itk kinase activity following TCR stimulation.


Assuntos
Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD4-Positivos/imunologia , Modelos Imunológicos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/imunologia , Animais , Baculoviridae/enzimologia , Baculoviridae/genética , Baculoviridae/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Vetores Genéticos/imunologia , Camundongos , Células NIH 3T3 , Mutação Puntual , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/genética , Spodoptera/enzimologia , Spodoptera/genética , Spodoptera/imunologia
13.
Proc Natl Acad Sci U S A ; 106(50): 21143-8, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19955438

RESUMO

Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.


Assuntos
Fosfolipase C gama/metabolismo , Proteínas Tirosina Quinases/metabolismo , Domínios de Homologia de src , Animais , Linhagem Celular , Insetos , Espectroscopia de Ressonância Magnética , Mutagênese , Fosforilação , Mapeamento de Interação de Proteínas , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Linfócitos T , Transfecção
14.
Front Med (Lausanne) ; 7: 438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974363

RESUMO

Hypertrophic scars (HS) arise from traumatic or surgical injuries and the subsequent abnormal wound healing, which is characterized by continuous and histologically localized inflammation. Therefore, inhibiting local inflammation is an effective method of treating HS. Recent insight into the role of interleukin-10 (IL-10), an important anti-inflammatory cytokine, in fibrosis has increased our understanding of the pathophysiology of HS and has suggested new therapeutic targets. This review summarizes the recent progress in elucidating the role of IL-10 in the formation of HS and its therapeutic potential based on current research. This knowledge will enhance our understanding of the role of IL-10 in scar formation and shed new light on the regulation and potential treatment of HS.

15.
J Mol Biol ; 428(6): 1290-1303, 2016 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-26812210

RESUMO

While the gene for p53 is mutated in many human cancers causing loss of function, many others maintain a wild-type gene but exhibit reduced p53 tumor suppressor activity through overexpression of the negative regulators, Mdm2 and/or MdmX. For the latter mechanism of loss of function, the activity of endogenous p53 can be restored through inhibition of Mdm2 or MdmX with small molecules. We previously reported a series of compounds based upon the Nutlin-3 chemical scaffold that bind to both MdmX and Mdm2 [Vara, B. A. et al. (2014) Organocatalytic, diastereo- and enantioselective synthesis of nonsymmetric cis-stilbene diamines: A platform for the preparation of single-enantiomer cis-imidazolines for protein-protein inhibition. J. Org. Chem. 79, 6913-6938]. Here we present the first solution structures based on data from NMR spectroscopy for MdmX in complex with four of these compounds and compare them with the MdmX:p53 complex. A p53-derived peptide binds with high affinity (Kd value of 150nM) and causes the formation of an extensive network of hydrogen bonds within MdmX; this constitutes the induction of order within MdmX through ligand binding. In contrast, the compounds bind more weakly (Kd values from 600nM to 12µM) and induce an incomplete hydrogen bond network within MdmX. Despite relatively weak binding, the four compounds activated p53 and induced p21(Cip1) expression in retinoblastoma cell lines that overexpress MdmX, suggesting that they specifically target MdmX and/or Mdm2. Our results document structure-activity relationships for lead-like small molecules targeting MdmX and suggest a strategy for their further optimization in the future by using NMR spectroscopy to monitor small-molecule-induced protein order as manifested through hydrogen bond formation.


Assuntos
Descoberta de Drogas/métodos , Imidazóis/química , Imidazóis/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
16.
Front Biosci ; 10: 385-97, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15574377

RESUMO

Protein-mediated interactions and enzymatic function provide the foundation upon which cellular signaling cascades control all of the activities of a cell. Post-translational modifications such as phosphorylation or ubiquitiation are well known means for modulating protein activity within the cell. These chemical modifications create new recognition motifs on proteins or shift conformational preferences such that protein catalytic and binding functions are altered in response to external stimuli. Moreover, detection of such modifications is often straightforward by conventional biochemical methods leading investigators toward mechanistic models of cell signaling involving post-translational modifications such as phosphorylation/dephosphorylation. While there is little doubt that such modifications play a significant role in transmission of information throughout the cell, there are certainly other mechanisms at work that are not as well understood at this time. Of particular interest in the context of this review is the intrinsic conformational switch afforded to a polypeptide by peptidyl prolyl cis/trans isomerization. Proline isomerization is emerging as a critical component of certain cell signaling cascades. In addition to serving as a conformational switch that enables a protein to adopt functionally distinct states, proline isomerization may serve as a recognition element for the ubiquitous peptidyl prolyl isomerases. This overview takes a close look at one particular signaling protein, the T cell specific tyrosine kinase Itk, and examines the role of proline isomerization and the peptidyl prolyl isomerase cyclophilin A in mediating Itk function following T cell receptor engagement.


Assuntos
Regulação Enzimológica da Expressão Gênica , Prolina/química , Transdução de Sinais , Animais , Ciclofilina A/química , Humanos , Espectroscopia de Ressonância Magnética , Peptidilprolil Isomerase/química , Fosforilação , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteínas Tirosina Quinases/química
17.
J Mol Biol ; 427(17): 2734-47, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25916191

RESUMO

Activation of the phospholipase, PLCγ1, is critical for proper T cell signaling following antigen receptor engagement. In T cells, the Tec family kinase, interleukin-2-induced tyrosine kinase (ITK), phosphorylates PLCγ1 at tyrosine 783 (Y783) leading to activation of phospholipase function and subsequent production of the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. In this work, we demonstrate that PLCγ1 can be primed for ITK-mediated phosphorylation on Y783 by a specific region of the adaptor protein, SLP-76. The SLP-76 phosphotyrosine-containing sequence, pY(173)IDR, does not conform to the canonical recognition motif for an SH2 domain yet binds with significant affinity to the C-terminal SH2 domain of PLCγ1 (SH2C). The SLP-76 pY(173) motif competes with the autoinhibited conformation surrounding the SH2C domain of PLCγ1 leading to exposure of the ITK recognition element on the PLCγ1 SH2 domain and release of the target tyrosine, Y783. These data contribute to the evolving model for the molecular events occurring early in the T cell activation process.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfolipase C gama/metabolismo , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinases/metabolismo , Linfócitos T/imunologia , Domínios de Homologia de src/genética , Animais , Sítios de Ligação , Ativação Enzimática , Inositol 1,4,5-Trifosfato/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Fosforilação , Ligação Proteica , Ratos , Transdução de Sinais/imunologia , Domínios de Homologia de src/imunologia
18.
Biotechnol Biofuels ; 8: 81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26269711

RESUMO

BACKGROUND: Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. RESULTS: The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. CONCLUSIONS: The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.

19.
J Signal Transduct ; 2012: 694386, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649724

RESUMO

ITK-SH3-mediated interactions, both with exogenous ligands and via intermolecular self-association with ITK-SH2, have been shown to be important for regulation of ITK activity. The biological significance of these competing SH3 interactions is not completely understood. A mutant of ITK where substitution of the SH3 domain with that of the related kinase BTK (ITK-BTK((SH3))) was used to disrupt intermolecular self-association of ITK while maintaining canonical binding to exogenous ligands such as SLP-76. ITK-BTK((SH3)) displays reduced association with SLP-76 leading to inefficient transphosphorylation, reduced phosphorylation of PLCγ1, and diminished Th(2) cytokine production. In contrast, ITK-BTK((SH3)) displays no defect in its localization to the T-cell-APC contact site. Another mutation, Y511F, in the activation loop of ITK, impairs ITK activation. T cells expressing ITK-Y511F display defective phosphorylation of ITK and its downstream target PLCγ1, as well as significant inhibition of Th(2) cytokines. In contrast, the inducible localization of ITK-Y511F to the T cell-APC contact site and its association with SLP-76 are not affected. The presented data lend further support to the hypothesis that precise interactions between ITK and its signaling partners are required to support ITK signaling downstream of the TCR.

20.
J Mol Biol ; 391(1): 164-77, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19523959

RESUMO

The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Tirosina Quinase da Agamaglobulinemia , Sequência de Aminoácidos , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Tirosina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA