Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 598
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2315990121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289960

RESUMO

Immune-mediated necrotizing myopathy (IMNM) is an autoimmune disorder associated with the presence of autoantibodies, characterized by severe clinical presentation with rapidly progressive muscular weakness and elevated levels of creatine kinase, while traditional pharmacological approaches possess varying and often limited effects. Considering the pathogenic role of autoantibodies, chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA) have emerged as a promising therapeutic strategy. We reported here a patient with anti-signal recognition particle IMNM refractory to multiple available therapies, who was treated with BCMA-targeting CAR-T cells, exhibited favorable safety profiles, sustained reduction in pathogenic autoantibodies, and persistent clinical improvements over 18 mo. Longitudinal single-cell RNA, B cell receptor, T cell receptor sequencing analysis presented the normalization of immune microenvironment after CAR-T cell infusion, including reconstitution of B cell lineages, replacement of T cell subclusters, and suppression of overactivated immune cells. Analysis on characteristics of CAR-T cells in IMNM demonstrated a more active expansion of CD8+ CAR-T cells, with a dynamic phenotype shifting pattern similar in CD4+ and CD8+ CAR-T cells. A comparison of CD8+ CAR-T cells in patients with IMNM and those with malignancies collected at different timepoints revealed a more NK-like phenotype with enhanced tendency of cell death and neuroinflammation and inhibited proliferating ability of CD8+ CAR-T cells in IMNM while neuroinflammation might be the distinct characteristics. Further studies are warranted to define the molecular features of CAR-T cells in autoimmunity and to seek higher efficiency and longer persistence of CAR-T cells in treating autoimmune disorders.


Assuntos
Doenças Autoimunes , Mieloma Múltiplo , Doenças Musculares , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Antígeno de Maturação de Linfócitos B , Doenças Neuroinflamatórias , Imunoterapia Adotiva , Doenças Autoimunes/terapia , Autoanticorpos , Doenças Musculares/terapia , Análise de Célula Única , Terapia Baseada em Transplante de Células e Tecidos , Microambiente Tumoral
2.
J Immunol ; 212(2): 346-354, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38054905

RESUMO

TNF-α and IFN-γ are two inflammatory cytokines that play critical roles in immune responses, but they can also negatively affect cell proliferation and viability. In particular, the combination of the two cytokines (TNF-α/IFN-γ) synergistically causes cytotoxicity in many cell types. We recently reported that mouse embryonic stem cells (ESCs) isolated from the blastocyst stage embryo do not respond to TNF-α and have limited response to IFN-γ, thereby avoiding TNF-α/IFN-γ cytotoxicity. The current study expanded our investigation to mouse trophoblast stem cells (TSCs) and their differentiated trophoblasts (TSC-TBs), the precursors and the differentiated cells of the placenta, respectively. In this study, we report that the combination of TNF-α/IFN-γ does not show the cytotoxicity to TSCs and TSC-TBs that otherwise effectively kills fibroblasts, similar to ESCs. Although ESCs, TSCs, and TSC-TBs are dramatically different in their growth rate, morphology, and physiological functions, they nevertheless share a similarity in being able to avoid TNF-α/IFN-γ cytotoxicity. We propose that this unique immune property may serve as a protective mechanism that limits cytokine cytotoxicity in the blastocyst. With molecular and cellular approaches and genome-wide transcriptomic analysis, we have demonstrated that the attenuated NF-κB and STAT1 transcription activation is a limiting factor that restricts the effect of TNF-α/IFN-γ on TSCs and TSC-TBs.


Assuntos
Citocinas , Fator de Necrose Tumoral alfa , Animais , Feminino , Camundongos , Gravidez , Citocinas/metabolismo , Interferon gama , NF-kappa B/metabolismo , Trofoblastos/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
3.
Nature ; 588(7836): 71-76, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230334

RESUMO

The constituent particles of matter can arrange themselves in various ways, giving rise to emergent phenomena that can be surprisingly rich and often cannot be understood by studying only the individual constituents. Discovering and understanding the emergence of such phenomena in quantum materials-especially those in which multiple degrees of freedom or energy scales are delicately balanced-is of fundamental interest to condensed-matter research1,2. Here we report on the surprising observation of emergent ferroelectricity in graphene-based moiré heterostructures. Ferroelectric materials show electrically switchable electric dipoles, which are usually formed by spatial separation between the average centres of positive and negative charge within the unit cell. On this basis, it is difficult to imagine graphene-a material composed of only carbon atoms-exhibiting ferroelectricity3. However, in this work we realize switchable ferroelectricity in Bernal-stacked bilayer graphene sandwiched between two hexagonal boron nitride layers. By introducing a moiré superlattice potential (via aligning bilayer graphene with the top and/or bottom boron nitride crystals), we observe prominent and robust hysteretic behaviour of the graphene resistance with an externally applied out-of-plane displacement field. Our systematic transport measurements reveal a rich and striking response as a function of displacement field and electron filling, and beyond the framework of conventional ferroelectrics. We further directly probe the ferroelectric polarization through a non-local monolayer graphene sensor. Our results suggest an unconventional, odd-parity electronic ordering in the bilayer graphene/boron nitride moiré system. This emergent moiré ferroelectricity may enable ultrafast, programmable and atomically thin carbon-based memory devices.

4.
Proc Natl Acad Sci U S A ; 120(1): e2209990120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577069

RESUMO

Microglia play a critical role in the clearance of myelin debris, thereby ensuring functional recovery from neural injury. Here, using mouse model of demyelination following two-point LPC injection, we show that the microglial autophagic-lysosomal pathway becomes overactivated in response to severe demyelination, leading to lipid droplet accumulation and a dysfunctional and pro-inflammatory microglial state, and finally failed myelin debris clearance and spatial learning deficits. Data from genetic approaches and pharmacological modulations, via microglial Atg5 deficient mice and intraventricular BAF A1 administration, respectively, demonstrate that staged suppression of excessive autophagic-lysosomal activation in microglia, but not sustained inhibition, results in better myelin debris degradation and exerts protective effects against demyelination. Combined multi-omics results in vitro further showed that enhanced lipid metabolism, especially the activation of the linoleic acid pathway, underlies this protective effect. Supplementation with conjugated linoleic acid (CLA), both in vivo and in vitro, could mimic these effects, including attenuating inflammation and restoring microglial pro-regenerative properties, finally resulting in better recovery from demyelination injuries and improved spatial learning function, by activating the peroxisome proliferator-activated receptor (PPAR-γ) pathway. Therefore, we propose that pharmacological inhibition targeting microglial autophagic-lysosomal overactivation or supplementation with CLA could represent a potential therapeutic strategy in demyelinated disorders.


Assuntos
Doenças Desmielinizantes , Microglia , Camundongos , Animais , Microglia/metabolismo , Ácido Linoleico/metabolismo , Autofagia , Doenças Desmielinizantes/metabolismo , Regeneração
5.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112132

RESUMO

Successful reproduction requires an oocyte competent to sustain early embryo development. By the end of oogenesis, the oocyte has entered a transcriptionally silenced state, the mechanisms and significance of which remain poorly understood. Histone H3.3, a histone H3 variant, has unique cell cycle-independent functions in chromatin structure and gene expression. Here, we have characterised the H3.3 chaperone Hira/Cabin1/Ubn1 complex, showing that loss of function of any of these subunits causes early embryogenesis failure in mouse. Transcriptome and nascent RNA analyses revealed that transcription is aberrantly silenced in mutant oocytes. Histone marks, including H3K4me3 and H3K9me3, are reduced and chromatin accessibility is impaired in Hira/Cabin1 mutants. Misregulated genes in mutant oocytes include Zscan4d, a two-cell specific gene involved in zygote genome activation. Overexpression of Zscan4 in the oocyte partially recapitulates the phenotypes of Hira mutants and Zscan4 knockdown in Cabin1 mutant oocytes partially restored their developmental potential, illustrating that temporal and spatial expression of Zscan4 is fine-tuned at the oocyte-to-embryo transition. Thus, the H3.3 chaperone Hira complex has a maternal effect function in oocyte developmental competence and embryogenesis, through modulating chromatin condensation and transcriptional quiescence.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Técnicas de Silenciamento de Genes , Chaperonas de Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oogênese/genética , Fatores de Transcrição/genética , Zigoto/metabolismo
6.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227586

RESUMO

High-resolution ribosome fractionation and low-input ribosome profiling of bovine oocytes and preimplantation embryos has enabled us to define the translational landscapes of early embryo development at an unprecedented level. We analyzed the transcriptome and the polysome- and non-polysome-bound RNA profiles of bovine oocytes (germinal vesicle and metaphase II stages) and early embryos at the two-cell, eight-cell, morula and blastocyst stages, and revealed four modes of translational selectivity: (1) selective translation of non-abundant mRNAs; (2) active, but modest translation of a selection of highly expressed mRNAs; (3) translationally suppressed abundant to moderately abundant mRNAs; and (4) mRNAs associated specifically with monosomes. A strong translational selection of low-abundance transcripts involved in metabolic pathways and lysosomes was found throughout bovine embryonic development. Notably, genes involved in mitochondrial function were prioritized for translation. We found that translation largely reflected transcription in oocytes and two-cell embryos, but observed a marked shift in the translational control in eight-cell embryos that was associated with the main phase of embryonic genome activation. Subsequently, transcription and translation become more synchronized in morulae and blastocysts. Taken together, these data reveal a unique spatiotemporal translational regulation that accompanies bovine preimplantation development.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Gravidez , Feminino , Bovinos , Animais , Desenvolvimento Embrionário/genética , Mórula/metabolismo , Blastocisto/metabolismo , Oócitos/metabolismo , Ribossomos/genética , Regulação da Expressão Gênica no Desenvolvimento
7.
Brain ; 147(1): 163-176, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740498

RESUMO

Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.


Assuntos
Doença de Alzheimer , Neuromielite Óptica , Animais , Camundongos , Humanos , Microglia/metabolismo , Doença de Alzheimer/metabolismo , Neuromielite Óptica/genética , Neuromielite Óptica/metabolismo , Doenças Neuroinflamatórias , Biomarcadores/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética
8.
Nucleic Acids Res ; 51(22): 12076-12091, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950888

RESUMO

Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.


Assuntos
Desenvolvimento Embrionário , Oócitos , Biossíntese de Proteínas , Regulação da Expressão Gênica no Desenvolvimento , Meiose , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Camundongos
9.
Biol Reprod ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408205

RESUMO

Profiling bovine blastocyst transcriptome at the single-cell level has enabled us to reveal the first cell lineage segregation, during which the inner cell mass (ICM), trophectoderm (TE), and an undefined population of transitional cells were identified. By comparing the transcriptome of blastocysts derived in vivo (IVV), in vitro from a conventional culture medium (IVC), and in vitro from an optimized reduced nutrient culture medium (IVR), we found a delay of the cell fate commitment to ICM in the IVC and IVR embryos. Developmental potential differences between IVV, IVC, and IVR embryos were mainly contributed by ICM and transitional cells. Pathway analysis of these non-TE cells between groups revealed highly active metabolic and biosynthetic processes, reduced cellular signaling, and reduced transmembrane transport activities in IVC embryos that may lead to reduced developmental potential. IVR embryos had lower activities in metabolic and biosynthetic processes but increased cellular signaling and transmembrane transport, suggesting these cellular mechanisms may contribute to improved blastocyst development compared to IVC embryos. However, the IVR embryos had compromised development compared to IVV embryos with notably over-active transmembrane transport activities that impaired ion homeostasis.

10.
Brain Behav Immun ; 119: 416-430, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636563

RESUMO

The role of microglia in triggering the blood-brain barrier (BBB) impairment and white matter damage after chronic cerebral hypoperfusion is unclear. Here we demonstrated that the vessel-adjacent microglia were specifically activated by the leakage of plasma low-density lipoprotein (LDL), which led to BBB breakdown and ischemic demyelination. Interestingly, we found that LDL stimulation enhanced microglial phagocytosis, causing excessive engulfment of myelin debris and resulting in an overwhelming lipid burden in microglia. Surprisingly, these lipid-laden microglia exhibited a suppressed profile of inflammatory response and compromised pro-regenerative properties. Microglia-specific knockdown of LDLR or systematic medication lowering circulating LDL-C showed protective effects against ischemic demyelination. Overall, our findings demonstrated that LDL-stimulated vessel-adjacent microglia possess a disease-specific molecular signature, characterized by suppressed regenerative properties, which is associated with the propagation of demyelination during ischemic white matter damage.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Lipoproteínas LDL , Microglia , Substância Branca , Microglia/metabolismo , Animais , Substância Branca/metabolismo , Substância Branca/patologia , Camundongos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Isquemia Encefálica/metabolismo , Barreira Hematoencefálica/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Fagocitose/fisiologia , Bainha de Mielina/metabolismo
11.
Pharmacol Res ; 206: 107268, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908614

RESUMO

Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.

12.
Inorg Chem ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943593

RESUMO

Zwitterionic thiolate ligands have the potential to introduce novel assembly modes and functions for noble metal clusters. However, their utilization in the synthesis of silver clusters remains understudied, particularly for the clusters containing reductive Ag(0) species. In this article, we report the first synthesis of a mixed-valence silver(0/I) cluster protected by zwitterionic Tab as thiolate ligands (Tab = 4-(trimethylammonio)benzenethiolate), denoted as [Ag22(Tab)24](PF6)20·16CH3OH·6Et2O (Ag22·16CH3OH·6Et2O), alongside an Ag(I) cluster [Ag20(Tab)12(PhCOO)10(MeCN)2(H2O)](PF6)10·11MeCN (Ag20·11MeCN). Ag22 has a distinct hierarchical supratetrahedral structure with a central {Ag6} kernel surrounded by four [Ag4(Tab)6]4+ units. High-resolution electrospray ionization mass spectra demonstrate that Ag22 has two free electrons, indicating a superatomic core. Ag20 has a drum-like [Ag12(Tab)6(PhCOO)6(H2O)]6+ inner core capped by two tetrahedral-like [Ag4(Tab)3(PhCOO)2(MeCN)]2+ units. Ag20 can be transformed into Ag22 after its reaction with NaBH4 in solution. Antibacterial measurements reveal that Ag22 has a significantly lower minimum inhibitory concentration than that of the Ag20 cluster. This work not only extends the stabilization of silver(0/I) clusters to neutral thiol ligands but also offers new materials for the development of novel antibacterial materials.

13.
Bioorg Med Chem ; 104: 117713, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574409

RESUMO

In this study, we developed a promising dual-function fluorescent ligand termed KS-1 by a slight structural modification on a reported carbazole-based scaffold. KS-1 was then found to mainly bind and illuminate the nuclear DNA G-quadruplexes (G4s) in a sandwich-like interacting mode, and also effectively modulate the oncogene expression through a G4-mediated manner. Furthermore, KS-1 was proved to inhibit cancer cell growth either in 2D monolayer cells or 3D multicellular tumor spheroids. To be noted, this ligand could overcome the shortcomings of other reported dual-function ligands that appeared to accumulate in the lysosomes or mitochondria, and may be used as a theranostic agent in the future.


Assuntos
Quadruplex G , Ligantes , Oncogenes , Corantes
14.
BMC Cardiovasc Disord ; 24(1): 3, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166569

RESUMO

BACKGROUND: Aslanger's pattern in electrocardiogram (ECG) indicates that patients may have acute inferior myocardial infarction(AMI) with concomitant critical stenoses on other coronary arteries, which needs to be evaluated the timing of revascularization as risk equivalents of ST elevation myocardial infarction(STEMI). CASE PRESENTATION: The patient was a 62-year-old male with chief complaint of intermittent exertional subxiphoid pain for 20 days from 30th June. One day after the last episode (19th July), the 18-lead electrocardiogram showed ST segment elevation of 0.05-0.1mV in lead III, ST segment depression in leads I, avL, and V2-V6, T wave inversion with positive terminal vector in lead V4-V5, and positive T wave in lead V6, which indicated Aslanger's pattern. With increased Troponin I (0.162ng/mL, 0-0.02), The patient was diagnosed as acute non-ST-segment elevation myocardial infarction (NSTEMI) and admitted to coronary ward on 20th July. The coronary angiography showed 95% stenosis in the distal left main coronary artery (LM) to the ostium of the left anterior descending artery (LAD), 90% stenosis in the proximal segment of the LAD, and 80% stenosis in the middle segment of the LAD, and TIMI blood flow was graded score 2. Three drug-eluting stents were implanted at the lesions. The patient's ECG returned close to normal one month after revascularization. CONCLUSION: We presented an acute coronary syndrome case whose ECG showed with Aslanger's pattern (i.e., isolated ST-segment elevation in lead III, associated ST-segment depression in lead V4-V6 with positive T wave/terminal vector, and greater ST-segment elevation in lead V1 than in lead V2), and was confirmed severe stenosis of the LM and the proximal segment of the LAD via coronary angiography. In clinical practice, especially in the emergency, patients with ECG presenting Aslanger's pattern should be urgently evaluated with prompt treatment, and the timing of emergency coronary angiography and revascularization should be evaluated to avoid adverse outcomes caused by delayed treatment.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio sem Supradesnível do Segmento ST , Infarto do Miocárdio com Supradesnível do Segmento ST , Masculino , Humanos , Pessoa de Meia-Idade , Constrição Patológica , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/terapia , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio sem Supradesnível do Segmento ST/etiologia , Angiografia Coronária , Eletrocardiografia , Arritmias Cardíacas
15.
Bioorg Chem ; 143: 107006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38035514

RESUMO

In the very recent years, the concept of disaggregation-induced emission (DIE) has been applied to design G4 probes, thereby rendering several fluorophores that may suffer from aggregation-induced quenching (ACQ) to develop into desirable G4-selective probes. However, the design idea based on DIE was often limited by the instability and irreversibility of the "intermolecular" aggregation/disaggregation process. In this study, a self-folded, near-infrared fluorescent probe for selectively illuminating G4s was engineered. This probe restored its fluorescence via unfolding of its intramolecular aggregation (UIA) mediated by distinctive G4 binding, which may display more controllable background emission as well as more promising ability to track G4 forming dynamics as compared to the reported DIE probes. Altogether, this study provided insights into the development of new types of applicable G4 selective fluorescent probes.


Assuntos
Corantes Fluorescentes , Quadruplex G , Corantes Fluorescentes/química
16.
BMC Anesthesiol ; 24(1): 130, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580909

RESUMO

BACKGROUND: Skin mottling is a common manifestation of peripheral tissue hypoperfusion, and its severity can be described using the skin mottling score (SMS). This study aims to evaluate the value of the SMS in detecting peripheral tissue hypoperfusion in critically ill patients following cardiac surgery. METHODS: Critically ill patients following cardiac surgery with risk factors for tissue hypoperfusion were enrolled (n = 373). Among these overall patients, we further defined a hypotension population (n = 178) and a shock population (n = 51). Hemodynamic and perfusion parameters were recorded. The primary outcome was peripheral hypoperfusion, defined as significant prolonged capillary refill time (CRT, > 3.0 s). The characteristics and hospital mortality of patients with and without skin mottling were compared. The area under receiver operating characteristic curves (AUROC) were used to assess the accuracy of SMS in detecting peripheral hypoperfusion. Besides, the relationships between SMS and conventional hemodynamic and perfusion parameters were investigated, and the factors most associated with the presence of skin mottling were identified. RESULTS: Of the 373-case overall population, 13 (3.5%) patients exhibited skin mottling, with SMS ranging from 1 to 5 (5, 1, 2, 2, and 3 cases, respectively). Patients with mottling had lower mean arterial pressure, higher vasopressor dose, less urine output (UO), higher CRT, lactate levels and hospital mortality (84.6% vs. 12.2%, p < 0.001). The occurrences of skin mottling were higher in hypotension population and shock population, reaching 5.6% and 15.7%, respectively. The AUROC for SMS to identify peripheral hypoperfusion was 0.64, 0.68, and 0.81 in the overall, hypotension, and shock populations, respectively. The optimal SMS threshold was 1, which corresponded to specificities of 98, 97 and 91 and sensitivities of 29, 38 and 67 in the three populations (overall, hypotension and shock). The correlation of UO, lactate, CRT and vasopressor dose with SMS was significant, among them, UO and CRT were identified as two major factors associated with the presence of skin mottling. CONCLUSION: In critically ill patients following cardiac surgery, SMS is a very specific yet less sensitive parameter for detecting peripheral tissue hypoperfusion.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Hipotensão , Choque Séptico , Humanos , Estado Terminal , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Hipotensão/diagnóstico , Hipotensão/complicações , Lactatos
17.
Phytother Res ; 38(5): 2128-2153, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400575

RESUMO

Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.


Assuntos
Produtos Biológicos , Fibrinolíticos , Trombose , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Trombose/tratamento farmacológico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Animais , Ativação Plaquetária/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
18.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203835

RESUMO

JQ-1 is a typical BRD4 inhibitor with the ability to directly fight tumor cells and evoke antitumor immunity via reducing the expression of PD-L1. However, problems arise with the development of JQ-1 in clinical trials, such as marked lymphoid and hematopoietic toxicity, leading to the investigation of combination therapy. SZU-101 is a TLR7 agonist designed and synthesized by our group with potent immunostimulatory activity. Therefore, we hypothesized that combination therapy of SZU-101 and JQ-1 would target innate immunity and adaptive immunity simultaneously, to achieve a better antitumor efficacy than monotherapy. In this study, the repressive effects of the combination administration on tumor growth and metastasis were demonstrated in both murine breast cancer and melanoma models. In 4T1 tumor-bearing mice, i.t. treatment with SZU-101 in combination with i.p. treatment with JQ-1 suppressed the growth of tumors at both injected and uninjected sites. Combination therapy increased M1/M2 ratio in TAMs, decreased PD-L1 expression and promoted the recruitment of activated CD8+ T cells in the TME. In summary, the improved therapeutic efficacy of the novel combination therapy appears to be feasible for the treatment of a diversity of cancers.


Assuntos
Adenina , Proteínas que Contêm Bromodomínio , Melanoma , Succinatos , Receptor 7 Toll-Like , Animais , Camundongos , Adenina/análogos & derivados , Adjuvantes Imunológicos , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Proteínas Nucleares , Receptor 7 Toll-Like/agonistas , Fatores de Transcrição , Proteínas que Contêm Bromodomínio/antagonistas & inibidores
19.
J Am Chem Soc ; 145(18): 9982-9987, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126789

RESUMO

Although the synthesis of low-dimensional metal sulfides by assembling cluster-based units is expected to promote the development of optical materials and models of enzyme active centers such as dinitrogenase, it is faced with limited assembly methodology. Herein we present a cut-to-link strategy to generate high-nuclearity assemblies, inspired by the formation of a Z-type dimer of the W-S-Cu analogues of PN cluster through in situ release of active linkers. Four new compounds with structures based on the same {Tp*WS3Cu3} incomplete cubane-like units were obtained using varied combinations of mild reagents. Open-aperture Z-scan measurements demonstrated the highest-nuclearity complex has the largest nonlinear optical absorption coefficient among discrete cluster-based materials reported to date. This approach enables building high-nuclearity metal sulfide clusters through cluster-based building blocks and opens a way to the design and exploration of materials based on well-identified building blocks.

20.
J Am Chem Soc ; 145(40): 22176-22183, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779382

RESUMO

Single crystals with chiral shapes aroused the interest of chemists due to their fascinating polarization rotation properties. Although the formation of large-scale spiral structures is considered to be a potential factor in chiral crystals, the precise mechanism behind their formation remains elusive. Herein, we present a rare phenomenon involving the multitransfer and expression of chirality at micro-, meso-, and macroscopic levels, starting from chiral carbon atoms and extending to the double-helical secondary structure, ultimately resulting in the chiral geometry of crystals. The assembly of the chiral double helices is facilitated by the dual characteristics of amide groups derived from amino acids, which serve as both hydrogen bond donors and receptors, similar to the assembly pattern observed in DNA. Crystal face analysis and theoretical morphology reveal two critical factors for the mechanism of the chiral crystal: inherent intrinsically symmetrical distribution of crystal faces and their acquired growth. Importantly, the magnetic circular dichroism (MCD) study reveals the strong magneto-optical response of the hypersensitive f-f transition in the UV-vis-NIR region, which is much stronger than previously observed signals. Remarkably, an external magnetic field can reverse the CD signal. This research highlights the potential of lanthanide-based chiral helical structures as promising magneto-optical materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA