Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Alzheimer Res ; 20(5): 301-317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37872793

RESUMO

Chronic exposure to stress throughout the lifespan has been the focus of many studies on Alzheimer's disease (AD) because of the similarities between the biological mechanisms involved in chronic stress and the pathophysiology of AD. In fact, the earliest abnormality associated with the disease is the presence of phosphorylated tau protein in locus coeruleus neurons, a brain structure highly responsive to stress and perceived threat. Here, we introduce allostatic load as a useful concept for understanding many of the complex, interacting neuropathological changes involved in the AD degenerative process. In response to chronic stress, aberrant tau proteins that begin to accumulate within the locus coeruleus decades prior to symptom onset appear to represent a primary pathological event in the AD cascade, triggering a wide range of interacting brain changes involving neuronal excitotoxicity, endocrine alterations, inflammation, oxidative stress, and amyloid plaque exacerbation. While it is acknowledged that stress will not necessarily be the major precipitating factor in all cases, early tau-induced changes within the locus coeruleus-norepinephrine pathway suggests that a therapeutic window might exist for preventative measures aimed at managing stress and restoring balance within the HPA axis.


Assuntos
Doença de Alzheimer , Locus Cerúleo , Humanos , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Doença de Alzheimer/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Proteínas tau/metabolismo , Encéfalo/patologia
2.
Clin Nutr ESPEN ; 57: 77-88, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37739736

RESUMO

Decades of research provide evidence that certain phytochemicals in tea (Camellia sinensis) and other herbal beverages are protective against the development of sporadic types of dementia in later life. Since tea drinking is an economical and widely adopted social-cultural practice across all age groups, it is an ideal product to target in designing low-cost dietary interventions for Alzheimer's Disease (AD), the most prevalent form of dementia. In this review, we focus on the protective roles of tea-derived polyphenols and other phytochemicals on mood, the stress response, attention, and sleep, in keeping with the perspective that many early neuropathological events in AD may stem, in part, from allostatic overload. This approach aligns with the perspective that many forms of dementia, including AD, begin to take root in the brain decades prior to symptom onset, underscoring the need for early uptake of accessible and viable lifestyle interventions. The findings reviewed here suggest that consuming green and oolong tea can improve mood and reduce overall stress. However, given the caffeine content in tea and its association with stress reactivity, the effects of daily whole tea consumption on the emotional state are likely dose-dependent with an inverted-U relationship to wellbeing. Plant-based beverages that are to be consumed in high daily quantities for health purposes and which are naturally free of caffeine, such as Rooibos, may be more appropriate as a dietary supplement for managing emotional regulation over the lifetime.


Assuntos
Doença de Alzheimer , Cafeína , Humanos , Cafeína/farmacologia , Afeto , Homeostase , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA