RESUMO
Two novel steroidal saponins, trilliumosides K (1) and L (2), were isolated from the rhizomes of Trillium govanianum led by bioactivity-guided phytochemical investigation along with seven known compounds: govanoside D (3), protodioscin (4), borassoside E (5), 20-hydroxyecdysone (6), 5,20-hydroxyecdysone (7), govanic acid (8), and diosgenin (9). The structure of novel compounds 1-2 was established using analysis of spectroscopic data including 1D and 2D nuclear magnetic resonance (NMR) and high resolution mass spectrometry (HR-ESI-MS) data. All isolated compounds were evaluated for in vitro cytotoxic activity against a panel of human cancer cell lines. Compound 1 showed significant cytotoxic activity against the A-549 (Lung) and SW-620 (Colon) cancer cell lines with IC50 values of 1.83 and 1.85 µM, respectively whereas the IC50 value of Compound 2 against the A-549 cell line was found to be 1.79 µM. Among the previously known compounds 3, 5, and 9, the cytotoxic IC50 values were found to be in the range of 5-10 µM. Comprehensive anti-cancer investigation revealed that Compound 2 inhibited in vitro migration and colony-forming capability in the A-549 cell line. Additionally, the mechanistic analysis of Compound 2 on the A-549 cell line indicated distinctive alterations in nuclear morphology, increased reactive oxygen species (ROS) production, and decreased levels of mitochondrial membrane potential (MMP). By upregulating the pro-apoptotic protein BAX and downregulating the anti-apoptotic protein BCL-2, the aforementioned actions eventually cause apoptosis, a crucial hallmark in cancer research, which activates Caspase-3. To the best of our knowledge, this study reports the first mechanistic anti-cancer evaluation of the compounds isolated from the rhizomes of T. govanianum with remarkable cytotoxic activity in the desired micromolar range.
RESUMO
P66Shc is the master regulator of oxidative stress whose pro-oxidant functioning is governed by ser36 phosphorylation. Phosphorylated p66Shc via Rac1 GTPase activation modulates ROS levels which in turn influence its pro-oxidative functions. Vitamin C at higher concentrations exhibits cytotoxic activity in various cancers, inducing ROS mediated cell death via pro-apoptotic mechanisms. Here we show a novel role of p66Shc in mediating pro-oxidant activity of vitamin C. Effect of vitamin C on the viability of breast cancer and normal cells was studied. High doses of vitamin C decreased viability of cancerous cells but not normal cells. Docking study displayed significant binding affinity of vitamin C with p66Shc PTB domain. Western blot results suggest that vitamin C not only enhances p66Shc expression but also induces its ser36 phosphorylation. Vitamin C at high doses was also found to activate Rac1, enhance ROS production and induce apoptosis. Interestingly, ser36 phosphorylation mutant transfection and pretreatment with antioxidant N-acetylcysteine results indicate that vitamin C induced Rac1 activation, ROS production and apoptosis is p66Shc ser36 phosphorylation dependent. Overall, results highlight that vitamin C mechanistically explores p66Shc/Rac1 pathway in inducing apoptosis and thus can pave a way to use this pathway as a potential therapeutic target in breast cancers.
Assuntos
Ácido Ascórbico , Estresse Oxidativo , Ácido Ascórbico/farmacologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
SNTA1 signaling axis plays an essential role in cytoskeletal organization and is also implicated in breast cancers. In this study, we aimed to investigate the involvement of actin cytoskeleton in the propagation of SNTA1/p66shc mediated pro-metastatic cascade in breast cancer cells.The effect of actin filament depolymerization on SNTA1-p66Shc interaction and the trimeric complex formation was analyzed using co-immunoprecipitation assays. Immunofluorescence and RhoA activation assays were used to show the involvement of SNTA1-p66Shc interaction in RhoA activation and F-actin organization. Cellular proliferation and ROS levels were assessed using MTT assay and Amplex red catalase assay. The migratory potential was evaluated using transwell migration assay and wound healing assay.We found that cytochalasin D mediated actin depolymerization significantly declines endogenous interaction between SNTA1 and p66Shc protein in MDA-MB-231 cells. Results indicate that SNTA1 and p66Shc interact with RhoA protein under physiological conditions. The ROS generation and RhoA activation were substantially enhanced in cells overexpressing SNTA1 and p66Shc, promoting proliferation and migration in these cells. In addition, we found that loss of SNTA1-p66Shc interaction impaired actin organization, proliferation, and migration in breast cancer cells. Our results demonstrate a novel reciprocal regulatory mechanism between actin modulation and SNTA1/p66Shc/RhoA signaling cascade in human metastatic breast cancer cells.
RESUMO
BACKGROUND: Alpha-1-syntrophin (SNTA1) is emerging as a novel modulator of the actin cytoskeleton. SNTA1 binds to F-actin and regulates intracellular localization and activity of various actin organizing signaling molecules. Aberration in syntrophin signaling has been closely linked with deregulated growth connected to tumor development/metastasis and its abnormal over expression has been observed in breast cancer. In the present work the effect of jasplakinolide, an actin-binding cyclodepsipeptide, on the SNTA1 protein activity and SNTA1 mediated downstream cellular events was studied in MDA-MB-231 breast cancer cell line. METHODS: SNTA1 protein levels and phosphorylation status were determined in MDA-MB-231 cells post jasplakinolide exposure using western blotting and immunoprecipitation techniques respectively. MDA-MB-231 cells were transfected with WT SNTA1 and DM SNTA1 (Y215/229 phospho mutant) and simultaneously treated with jasplakinolide. The effect of jasplakinolide and SNTA1 protein on cell migration was determined using the boyden chamber assay. RESULTS: Jasplakinolide treatment decreases proliferation of MDA-MB-231 cells in both dose and time dependent manner. Results suggest that subtoxic doses of jasplakinolide induce morphological changes in MDA-MB-231 cells from flat spindle shape adherent cells to round weakly adherent forms. Mechanistically, jasplakinolide treatment was found to decrease SNTA1 protein levels and its tyrosine phosphorylation status. Moreover, migratory potential of jasplakinolide treated cells was significantly inhibited in comparison to control cells. CONCLUSION: Our results demonstrate that jasplakinolide inhibits cell migration by impairing SNTA1 functioning in breast cancer cells.
Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio , Movimento Celular/efeitos dos fármacos , Depsipeptídeos , Proteínas de Membrana , Proteínas Musculares , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Depsipeptídeos/toxicidade , Feminino , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Musculares/análise , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Fosforilação/efeitos dos fármacosRESUMO
ShcA (Src homologous- collagen homologue), family of adapter proteins, consists of three isoforms which integrate and transduce external stimuli to different signaling networks. ShcA family consists of p46Shc, p52Shc and p66Shc isoforms, characterized by having multiple protein-lipid and protein-protein interaction domains implying their functional diversity. Among the three isoforms p66Shc is structurally different containing an additional CH2 domain which attributes to its dual functionality in cell growth, mediating both cell proliferation and apoptosis. Besides, p66Shc is also involved in different biological processes including reactive oxygen species (ROS) production, cell migration, ageing, cytoskeletal reorganization and cell adhesion. Moreover, the interplay between p66Shc and ROS is implicated in the pathology of various dreadful diseases. Accordingly, here we discuss the recent structural aspects of all ShcA adaptor proteins but are highlighting the case of p66Shc as model isoform. Furthermore, this review insights the role of p66Shc in progression of chronic age-related diseases like neuro diseases, metabolic disorders (non-alcoholic fatty liver, obesity, diabetes, cardiovascular diseases, vascular endothelial dysfunction) and cancer in relation to ROS. We finally conclude that p66Shc might act as a valuable biomarker for the prognosis of these diseases and could be used as a potential therapeutic target.