Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 69: 120-130, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355715

RESUMO

Short collagen-like peptides (CLPs) are being proposed as alternatives to full-length collagen for use in tissue engineering, on their own as soft hydrogels, or conjugated to synthetic polymer for mechanical strength. However, despite intended clinical use, little is known about their safety and efficacy, mechanism of action or degree of similarity to the full-length counterparts they mimic. Here, we show the functional equivalence of a CLP conjugated to polyethylene glycol (CLP-PEG) to full-length recombinant human collagen in vitro and in promoting stable regeneration of corneal tissue and nerves in a pre-clinical mini-pig model. We also show that these peptide analogs exerted their pro-regeneration effects through stimulating extracellular vesicle production by host cells. Our results support future use of CLP-PEG implants for corneal regeneration, suggesting the feasibility of these or similar peptide analogs in clinical application in the eye and other tissues. STATEMENT OF SIGNIFICANCE: Although biomaterials comprising full-length recombinant human collagen and extracted animal collagen have been evaluated and used clinically, these macromolecules provide only a limited number of functional groups amenable to chemical modification or crosslinking and are demanding to process. Synthetic, customizable analogs that are functionally equivalent, and can be readily scaled-up are therefore very desirable for pre-clinical to clinical translation. Here, we demonstrate, using cornea regeneration as our test bed, that collagen-like-peptides conjugated to multifunctional polyethylene glycol (CLP-PEG) when grafted into mini-pigs as corneal implants were functionally equivalent to recombinant human collagen-based implants that were successfully tested in patients. We also show for the first time that these materials affected regeneration through stimulation of extracellular vesicle production by endogenous host cells that have migrated into the CLP-PEG scaffolds.


Assuntos
Colágeno/química , Córnea/fisiologia , Córnea/cirurgia , Implantes Experimentais , Peptídeos/química , Regeneração , Animais , Linhagem Celular Transformada , Humanos , Polietilenoglicóis/química , Suínos , Porco Miniatura
2.
Acta Biomater ; 12: 70-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25448347

RESUMO

The implant-host interface is a critical element in guiding tissue or organ regeneration. We previously developed hydrogels comprising interpenetrating networks of recombinant human collagen type III and 2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC) as substitutes for the corneal extracellular matrix that promote endogenous regeneration of corneal tissue. To render them functional for clinical application, we have now optimized their composition and thereby enhanced their mechanical properties. We have demonstrated that such optimized RHCIII-MPC hydrogels are suitable for precision femtosecond laser cutting to produce complementing implants and host surgical beds for subsequent tissue welding. This avoids the tissue damage and inflammation associated with manual surgical techniques, thereby leading to more efficient healing. Although we previously demonstrated in clinical testing that RHCIII-based implants stimulated cornea regeneration in patients, the rate of epithelial cell coverage of the implants needs improvement, e.g. modification of the implant surface. We now show that our 500µm thick RHCIII-MPC constructs comprising over 85% water are suitable for microcontact printing with fibronectin. The resulting fibronectin micropatterns promote cell adhesion, unlike the bare RHCIII-MPC hydrogel. Interestingly, a pattern of 30µm wide fibronectin stripes enhanced cell attachment and showed the highest mitotic rates, an effect that potentially can be utilized for faster integration of the implant. We have therefore shown that laboratory-produced mimics of naturally occurring collagen and phospholipids can be fabricated into robust hydrogels that can be laser profiled and patterned to enhance their potential function as artificial substitutes of donor human corneas.


Assuntos
Colágeno/química , Hidrogéis , Fosforilcolina/química , Medicina Regenerativa , Adesão Celular , Linhagem Celular , Proliferação de Células , Humanos , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA