Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
PLoS Comput Biol ; 18(4): e1010053, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35468127

RESUMO

In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection.


Assuntos
Infecções por HIV , HIV-1 , Antivirais , Infecções por HIV/tratamento farmacológico , Humanos , Interferon-alfa/farmacologia
2.
PLoS Pathog ; 16(9): e1008812, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32913367

RESUMO

The APOBEC3 deaminases are potent inhibitors of virus replication and barriers to cross-species transmission. For simian immunodeficiency virus (SIV) to transmit to a new primate host, as happened multiple times to seed the ongoing HIV-1 epidemic, the viral infectivity factor (Vif) must be capable of neutralizing the APOBEC3 enzymes of the new host. Although much is known about current interactions of HIV-1 Vif and human APOBEC3s, the evolutionary changes in SIV Vif required for transmission from chimpanzees to gorillas and ultimately to humans are poorly understood. Here, we demonstrate that gorilla APOBEC3G is a factor with the potential to hamper SIV transmission from chimpanzees to gorillas. Gain-of-function experiments using SIVcpzPtt Vif revealed that this barrier could be overcome by a single Vif acidic amino acid substitution (M16E). Moreover, degradation of gorilla APOBEC3F is induced by Vif through a mechanism that is distinct from that of human APOBEC3F. Thus, our findings identify virus adaptations in gorillas that preceded and may have facilitated transmission to humans.


Assuntos
Desaminase APOBEC-3G/metabolismo , Evolução Molecular , Produtos do Gene vif/metabolismo , Interações Hospedeiro-Patógeno , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/isolamento & purificação , Replicação Viral , Desaminase APOBEC-3G/química , Desaminase APOBEC-3G/genética , Sequência de Aminoácidos , Animais , Produtos do Gene vif/química , Produtos do Gene vif/genética , Gorilla gorilla , Humanos , Pan troglodytes , Filogenia , Conformação Proteica , Homologia de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
3.
J Theor Biol ; 498: 110295, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335137

RESUMO

APOBEC3 proteins inhibit human immunodeficiency virus (HIV)-1 infection by independently impairing viral reverse transcription and inducing G-to-A mutations in viral DNA. An HIV-1-encoded protein, viral infectivity factor (Vif), can counteract these antiviral activities of APOBEC3 proteins. Although previous studies using in vitro cell culture systems have revealed the molecular mechanisms of the antiviral action of APOBEC3 proteins and their antagonism by Vif, it remains unclear how APOBEC3 proteins affect the kinetics of HIV-1 replication in vivo. Here we quantified the time-series of viral load datasets from humanized mice infected with HIV-1 variants in the presence of APOBEC3F, APOBEC3G, or both APOBEC3F/G using a simple mathematical model that accounted for inter-individual variability. Through experimental and mathematical investigation, we formulated and calculated the total antiviral activity of APOBEC3F and APOBEC3G based on the estimated initial growth rates of viral loads in vivo. Interestingly, we quantitatively demonstrated that compared with APOBEC3G, the antiviral activity of APOBEC3F was widely distributed but skewed toward lower activity, although their mean values were similar. We concluded that APOBEC3G markedly and robustly restricted the initial stages of viral growth in vivo. This is the first report to quantitatively elucidate how APOBEC3F and APOBEC3G differ in their anti-HIV-1 modes in vivo.


Assuntos
Infecções por HIV , HIV-1 , Desaminase APOBEC-3G , Animais , Antivirais , Citidina Desaminase , Citosina Desaminase , Camundongos
4.
J Virol ; 92(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29212937

RESUMO

Human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, originated from simian immunodeficiency virus from chimpanzees (SIVcpz), the precursor of the human virus, approximately 100 years ago. This indicates that HIV-1 has emerged through the cross-species transmission of SIVcpz from chimpanzees to humans. However, it remains unclear how SIVcpz has evolved into pandemic HIV-1 in humans. To address this question, we inoculated three SIVcpz strains (MB897, EK505, and MT145), four pandemic HIV-1 strains (NL4-3, NLCSFV3, JRCSF, and AD8), and two nonpandemic HIV-1 strains (YBF30 and DJO0131). Humanized mice infected with SIVcpz strain MB897, a virus phylogenetically similar to pandemic HIV-1, exhibited a peak viral load comparable to that of mice infected with pandemic HIV-1, while peak viral loads of mice infected with SIVcpz strain EK505 or MT145 as well as nonpandemic HIV-1 strains were significantly lower. These results suggest that SIVcpz strain MB897 is preadapted to humans, unlike the other SIVcpz strains. Moreover, viral RNA sequencing of MB897-infected humanized mice identified a nonsynonymous mutation in env, a G413R substitution in gp120. The infectivity of the gp120 G413R mutant of MB897 was significantly higher than that of parental MB897. Furthermore, we demonstrated that the gp120 G413R mutant of MB897 augments the capacity for viral replication in both in vitro cell cultures and humanized mice. Taken together, this is the first experimental investigation to use an animal model to demonstrate a gain-of-function evolution of SIVcpz into pandemic HIV-1.IMPORTANCE From the mid-20th century, humans have been exposed to the menace of infectious viral diseases, such as severe acute respiratory syndrome coronavirus, Ebola virus, and Zika virus. These outbreaks of emerging/reemerging viruses can be triggered by cross-species viral transmission from wild animals to humans, or zoonoses. HIV-1, the causative agent of AIDS, emerged by the cross-species transmission of SIVcpz, the HIV-1 precursor in chimpanzees, around 100 years ago. However, the process by which SIVcpz evolved to become HIV-1 in humans remains unclear. Here, by using a hematopoietic stem cell-transplanted humanized-mouse model, we experimentally recapitulate the evolutionary process of SIVcpz to become HIV-1. We provide evidence suggesting that a strain of SIVcpz, MB897, preadapted to infect humans over other SIVcpz strains. We further demonstrate a gain-of-function evolution of SIVcpz in infected humanized mice. Our study reveals that pandemic HIV-1 has emerged through at least two steps: preadaptation and subsequent gain-of-function mutations.


Assuntos
Evolução Molecular , HIV-1/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Zoonoses/transmissão , Animais , Animais Selvagens/virologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Pan troglodytes/virologia , Filogenia , RNA Viral/genética , Carga Viral , Replicação Viral
6.
PLoS Pathog ; 13(5): e1006348, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28475648

RESUMO

APOBEC3 (A3) family proteins are DNA cytosine deaminases recognized for contributing to HIV-1 restriction and mutation. Prior studies have demonstrated that A3D, A3F, and A3G enzymes elicit a robust anti-HIV-1 effect in cell cultures and in humanized mouse models. Human A3H is polymorphic and can be categorized into three phenotypes: stable, intermediate, and unstable. However, the anti-viral effect of endogenous A3H in vivo has yet to be examined. Here we utilize a hematopoietic stem cell-transplanted humanized mouse model and demonstrate that stable A3H robustly affects HIV-1 fitness in vivo. In contrast, the selection pressure mediated by intermediate A3H is relaxed. Intriguingly, viral genomic RNA sequencing reveled that HIV-1 frequently adapts to better counteract stable A3H during replication in humanized mice. Molecular phylogenetic analyses and mathematical modeling suggest that stable A3H may be a critical factor in human-to-human viral transmission. Taken together, this study provides evidence that stable variants of A3H impose selective pressure on HIV-1.


Assuntos
Aminoidrolases/genética , Citosina Desaminase/genética , Infecções por HIV/virologia , HIV-1/fisiologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética , Desaminases APOBEC , Aminoidrolases/metabolismo , Animais , Citidina Desaminase , Citosina Desaminase/metabolismo , Modelos Animais de Doenças , Células HEK293 , Infecções por HIV/transmissão , HIV-1/genética , Humanos , Camundongos , Camundongos Knockout , Modelos Genéticos , Mutação , Filogenia , RNA Viral/química , RNA Viral/genética , Análise de Sequência de RNA , Replicação Viral
7.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331087

RESUMO

The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease.IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals.


Assuntos
Desaminases APOBEC/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/genética , Desaminases APOBEC/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Gatos , Evolução Molecular , Produtos do Gene vif/genética , Interações Hospedeiro-Patógeno , Vírus da Imunodeficiência Felina/metabolismo , Vírus da Imunodeficiência Felina/patogenicidade , Virulência
8.
J Virol ; 90(1): 474-85, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491161

RESUMO

UNLABELLED: Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) DNA cytosine deaminases can be incorporated into progeny virions and inhibit lentiviral replication. On the other hand, viral infectivity factor (Vif) of lentiviruses antagonizes A3-mediated antiviral activities by degrading A3 proteins. It is known that domestic cat (Felis catus) APOBEC3Z3 (A3Z3), the ortholog of human APOBEC3H, potently suppresses the infectivity of vif-defective feline immunodeficiency virus (FIV). Although a recent report has shown that domestic cat encodes 7 haplotypes (hap I to hap VII) of A3Z3, the relevance of A3Z3 polymorphism in domestic cats with FIV Vif has not yet been addressed. In this study, we demonstrated that these feline A3Z3 variants suppress vif-defective FIV infectivity. We also revealed that codon 65 of feline A3Z3 is a positively selected site and that A3Z3 hap V is subject to positive selection during evolution. It is particularly noteworthy that feline A3Z3 hap V is resistant to FIV Vif-mediated degradation and still inhibits vif-proficient viral infection. Moreover, the side chain size, but not the hydrophobicity, of the amino acid at position 65 determines the resistance to FIV Vif-mediated degradation. Furthermore, phylogenetic analyses have led to the inference that feline A3Z3 hap V emerged approximately 60,000 years ago. Taken together, these findings suggest that feline A3Z3 hap V may have been selected for escape from an ancestral FIV. This is the first evidence for an evolutionary "arms race" between the domestic cat and its cognate lentivirus. IMPORTANCE: Gene diversity and selective pressure are intriguing topics in the field of evolutionary biology. A direct interaction between a cellular protein and a viral protein can precipitate an evolutionary arms race between host and virus. One example is primate APOBEC3G, which potently restricts the replication of primate lentiviruses (e.g., human immunodeficiency virus type 1 [HIV-1] and simian immunodeficiency virus [SIV]) if its activity is not counteracted by the viral Vif protein. Here we investigate the ability of 7 naturally occurring variants of feline APOBEC3, APOBEC3Z3 (A3Z3), to inhibit FIV replication. Interestingly, one feline A3Z3 variant is dominant, restrictive, and naturally resistant to FIV Vif-mediated degradation. Phylogenetic analyses revealed that the ancestral change that generated this variant could have been caused by positive Darwinian selection, presumably due to an ancestral FIV infection. The experimental-phylogenetic investigation sheds light on the evolutionary history of the domestic cat, which was likely influenced by lentiviral infection.


Assuntos
Citidina Desaminase/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Imunodeficiência Felina/imunologia , Vírus da Imunodeficiência Felina/fisiologia , Replicação Viral , Animais , Gatos , Citidina Desaminase/genética , Evolução Molecular , Produtos do Gene vif/deficiência , Seleção Genética
9.
Retrovirology ; 13: 23, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27086687

RESUMO

BACKGROUND: Tetherin is an intrinsic anti-viral factor impairing the release of nascent HIV-1 particles from infected cells. Vpu, an HIV-1 accessory protein, antagonizes the anti-viral action of tetherin. Although previous studies using in vitro cell culture systems have revealed the molecular mechanisms of the anti-viral action of tetherin and the antagonizing action of Vpu against tetherin, it still remains unclear how Vpu affects the kinetics of HIV-1 replication in vivo. RESULTS: To quantitatively assess the role of Vpu in viral replication in vivo, we analyzed time courses of experimental data with viral load and target cell levels in the peripheral blood of humanized mice infected with wild-type and vpu-deficient HIV-1. Our recently developed mathematical model describes the acute phase of this infection reasonably, and allowed us to estimate several parameters characterizing HIV-1 infection in mice. Using a technique of Bayesian parameter estimation, we estimate distributions of the basic reproduction number of wild-type and vpu-deficient HIV-1. This reveals that Vpu markedly increases the rate of viral replication in vivo. CONCLUSIONS: Combining experiments with mathematical modeling, we provide an estimate for the contribution of Vpu to viral replication in humanized mice.


Assuntos
HIV-1/fisiologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral , Animais , Humanos , Camundongos , Camundongos SCID , Modelos Teóricos
10.
PLoS Pathog ; 10(10): e1004453, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330146

RESUMO

Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo.


Assuntos
Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , HIV-1 , Mutação/genética , RNA Viral/genética , Animais , Evolução Biológica , Mapeamento Cromossômico , Modelos Animais de Doenças , Variação Genética/genética , Humanos , Camundongos , Receptores CXCR4/genética , Replicação Viral/fisiologia
11.
Microbiol Immunol ; 60(7): 483-96, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27278725

RESUMO

The range of genome-editing tools has recently been expanded. In particular, an RNA-guided genome-editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)-associated 9 (Cas9) system, has many applications for human diseases. In this study, guide RNA (gRNA) to target gag, pol and a long terminal repeat of HIV-1 was designed and used to generate gRNA-expressing lentiviral vectors. An HIV-1-specific gRNA and Cas9 were stably dually transduced into a highly HIV-1-susceptible human T-cell line and the inhibitory ability of the anti-HIV-1 CRISPR/Cas9 lentiviral vector assessed. Although clear inhibition of the early phase of HIV-1 infection was observed, as evaluated by a VSV-G-pseudotyped HIV-1 reporter system, the anti-HIV-1 potency in multiple rounds of wild type (WT) viral replication was insufficient, either because of generation of resistant viruses or overcoming of the activity of the WT virus. Thus, there are potential difficulties that must be addressed when considering anti-HIV-1 treatment with the CRISPR/Cas9 system alone.


Assuntos
Sistemas CRISPR-Cas , HIV-1/genética , Replicação Viral , Linhagem Celular , Células Cultivadas , Edição de Genes , Marcação de Genes , Genes Virais , Infecções por HIV/virologia , Humanos , Mutação , RNA Guia de Cinetoplastídeos , Integração Viral
12.
Microbiol Immunol ; 60(4): 272-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26935128

RESUMO

How host-virus co-evolutionary relationships manifest is one of the most intriguing issues in virology. To address this topic, the mammal-lentivirus relationship can be considered as an interplay of cellular and viral proteins, particularly apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) and viral infectivity factor (Vif). APOBEC3s enzymatically restrict lentivirus replication, whereas Vif antagonizes the host anti-viral action mediated by APOBEC3. In this study, the focus was on the interplay between feline APOBEC3 proteins and two feline immunodeficiency viruses in cats and pumas. To our knowledge, this study provides the first evidence of non-primate lentiviral Vif being incapable of counteracting a natural host's anti-viral activity mediated via APOBEC3 protein.


Assuntos
Citosina Desaminase/metabolismo , Produtos do Gene vif/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Desaminases APOBEC , Animais , Gatos , Citidina Desaminase , Citosina Desaminase/genética , Evolução Molecular , Produtos do Gene vif/genética , Produtos do Gene vif/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Imunodeficiência Felina/genética , Vírus da Imunodeficiência Felina/imunologia , Puma , Especificidade da Espécie , Viroses/veterinária , Replicação Viral
13.
Microbiol Immunol ; 60(6): 427-36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27193350

RESUMO

Mammals have co-evolved with retroviruses, including lentiviruses, over a long period. Evidence supporting this contention is that viral infectivity factor (Vif) encoded by lentiviruses antagonizes the anti-viral action of cellular apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) of the host. To orchestrate E3 ubiquitin ligase complex for APOBEC3 degradation, Vifs utilize mammalian proteins such as core-binding factor beta (CBFB; for primate lentiviruses) or cyclophilin A (CYPA; for Maedi-Visna virus [MVV]). However, the co-evolutionary relationship between lentiviral Vif and the mammalian proteins associated with Vif-mediated APOBEC3 degradation is poorly understood. Moreover, it is unclear whether Vif proteins of small ruminant lentiviruses (SRLVs), including MVV and caprine arthritis encephalitis virus (CAEV), commonly utilize CYPA to degrade the APOBEC3 of their hosts. In this study, molecular phylogenetic and protein homology modeling revealed that Vif co-factors are evolutionarily and structurally conserved. It was also found that not only MVV but also CAEV Vifs degrade APOBEC3 of both sheep and goats and that CAEV Vifs interact with CYPA. These findings suggest that lentiviral Vifs chose evolutionarily and structurally stable proteins as their partners (e.g., CBFB or CYPA) for APOBEC3 degradation and, particularly, that SRLV Vifs evolved to utilize CYPA as their co-factor in degradation of ovine and caprine APOBEC3.


Assuntos
Vírus da Artrite-Encefalite Caprina/genética , Ciclofilina A/genética , Ciclofilina A/metabolismo , Citidina Desaminase/metabolismo , Produtos do Gene vif/genética , Produtos do Gene vif/metabolismo , Animais , Vírus da Artrite-Encefalite Caprina/metabolismo , Células Cultivadas , Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citidina Desaminase/genética , Evolução Molecular , Cabras , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interleucina-2/genética , Filogenia , Ovinos
14.
J Gen Virol ; 96(9): 2867-2877, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26041873

RESUMO

It has been estimated that human immunodeficiency virus type 1 originated from the zoonotic transmission of simian immunodeficiency virus (SIV) of chimpanzees, SIVcpz, and that SIVcpz emerged by the recombination of two lineages of SIVs in Old World monkeys (SIVgsn/mon/mus in guenons and SIVrcm in red-capped mangabeys) and SIVcpz Nef is most closely related to SIVrcm Nef. These observations suggest that SIVrcm Nef had an advantage over SIVgsn/mon/mus during the evolution of SIVcpz in chimpanzees, although this advantage remains uncertain. Nef is a multifunctional protein which downregulates CD4 and coreceptor proteins from the surface of infected cells, presumably to limit superinfection. To assess the possibility that SIVrcm Nef was selected by its superior ability to downregulate viral entry receptors in chimpanzees, we compared its ability to down-modulate viral receptor proteins from humans, chimpanzees and red-capped mangabeys with Nef proteins from eight other different strains of SIVs. Surprisingly, the ability of SIVrcm Nef to downregulate CCR5, CCR2B and CXCR6 was comparable to or lower than SIVgsn/mon/mus Nef, indicating that ability to down-modulate chemokine receptors was not the selective pressure. However, SIVrcm Nef significantly downregulates chimpanzee CD4 over SIVgsn/mon/mus Nefs. Our findings suggest the possibility that the selection of SIVrcm Nef by ancestral SIVcpz is due to its superior capacity to down-modulate chimpanzees CD4 rather than coreceptor proteins.


Assuntos
Evolução Molecular , Produtos do Gene nef/genética , Lentivirus de Primatas/genética , Doenças dos Primatas/genética , Receptores Virais/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética , Animais , Cercocebus , Produtos do Gene nef/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Lentivirus de Primatas/classificação , Lentivirus de Primatas/metabolismo , Pan troglodytes , Filogenia , Doenças dos Primatas/metabolismo , Doenças dos Primatas/virologia , Primatas , Receptores Virais/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/metabolismo
15.
J Virol ; 88(10): 5881-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623435

RESUMO

APOBEC3F and APOBEC3G cytidine deaminases potently inhibit human immunodeficiency virus type 1 (HIV-1) replication by enzymatically inserting G-to-A mutations in viral DNA and/or impairing viral reverse transcription independently of their deaminase activity. Through experimental and mathematical investigation, here we quantitatively demonstrate that 99.3% of the antiviral effect of APOBEC3G is dependent on its deaminase activity, whereas 30.2% of the antiviral effect of APOBEC3F is attributed to deaminase-independent ability. This is the first report quantitatively elucidating how APOBEC3F and APOBEC3G differ in their anti-HIV-1 modes.


Assuntos
Citidina Desaminase/metabolismo , Citosina Desaminase/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , Desaminase APOBEC-3G , Linhagem Celular , Humanos , Modelos Teóricos
16.
PLoS Pathog ; 9(12): e1003812, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339781

RESUMO

The precise role of viral protein R (Vpr), an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5(+) CD4(+) T cells, which mainly consist of regulatory CD4(+) T cells (Tregs), resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD), to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4(+) T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5(+) CD4(+) T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/fisiologia , Doença Aguda , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Viremia/imunologia
17.
Theor Biol Med Model ; 11: 22, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24885827

RESUMO

BACKGROUND: Mathematical modeling of virus dynamics has provided quantitative insights into viral infections such as influenza, the simian immunodeficiency virus/human immunodeficiency virus, hepatitis B, and hepatitis C. Through modeling, we can estimate the half-life of infected cells, the exponential growth rate, and the basic reproduction number (R0). To calculate R0 from virus load data, the death rate of productively infected cells is required. This can be readily estimated from treatment data collected during the chronic phase, but is difficult to determine from acute infection data. Here, we propose two new models that can reliably estimate the average life span of infected cells from acute-phase data, and apply both methods to experimental data from humanized mice infected with HIV-1. METHODS: Both new models, called as the reduced quasi-steady state (RQS) model and the piece-wise regression (PWR) model, are derived by simplification of a standard model for the acute-phase dynamics of target cells, viruses and infected cells. By having only a limited number of parameters, both models allow us to reliably estimate the death rate of productively infected cells. Simulated datasets with plausible parameter values are generated with the standard model to compare the performance of the new models with that of the major previous model (i.e., the simple exponential model). Finally, we fit models to time course data from HIV-1 infected humanized mice to estimate the several important parameters characterizing their acute infection. RESULTS AND CONCLUSIONS: The new models provided much better estimates than the previous model because they more precisely capture the de novo infection process. Both models describe the acute phase of HIV-1 infected humanized mice reasonably well, and we estimated an average death rate of infected cells of 0.61 and 0.61, an average exponential growth rate of 0.69 and 0.76, and an average basic reproduction number of 2.30 and 2.38 in the RQS model and the PWR model, respectively. These estimates are fairly close to those obtained in humans.


Assuntos
Morte Celular , Modelos Animais de Doenças , Infecções por HIV/patologia , Modelos Estatísticos , Doença Aguda , Animais , HIV-1/isolamento & purificação , Humanos , Camundongos
18.
J Virol ; 86(9): 5000-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22357275

RESUMO

While human cells express potent antiviral proteins as part of the host defense repertoire, viruses have evolved their own arsenal of proteins to antagonize them. BST2 was identified as an inhibitory cellular protein of HIV-1 replication, which tethers virions to the cell surface to prevent their release. On the other hand, the HIV-1 accessory protein, Vpu, has the ability to downregulate and counteract BST2. Vpu also possesses the ability to downmodulate cellular CD4 and SLAMF6 molecules expressed on infected cells. However, the role of Vpu in HIV-1 infection in vivo remains unclear. Here, using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrate that Vpu contributes to the efficient spread of HIV-1 in vivo during the acute phase of infection. Although Vpu did not affect viral cytopathicity, target cell preference, and the level of viral protein expression, the amount of cell-free virions in vpu-deficient HIV-1-infected mice was profoundly lower than that in wild-type HIV-1-infected mice. We provide a novel insight suggesting that Vpu concomitantly downregulates BST2 and CD4, but not SLAMF6, from the surface of infected cells. Furthermore, we show evidence suggesting that BST2 and CD4 impair the production of cell-free infectious virions but do not associate with the efficiency of cell-to-cell HIV-1 transmission. Taken together, our findings suggest that Vpu downmodulates BST2 and CD4 in infected cells and augments the initial burst of HIV-1 replication in vivo. This is the first report demonstrating the role of Vpu in HIV-1 infection in an in vivo model.


Assuntos
Antígenos CD/metabolismo , Antígenos CD4/metabolismo , Regulação para Baixo , Infecções por HIV/virologia , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Comunicação Celular , Linhagem Celular , Membrana Celular/metabolismo , Regulação para Baixo/genética , Perfilação da Expressão Gênica , HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Ligação Proteica , Baço/metabolismo , Baço/virologia , Fatores de Tempo , Proteínas Virais Reguladoras e Acessórias/genética
19.
Blood ; 117(21): 5663-73, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21467545

RESUMO

EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a rare yet devastating disorder caused by EBV infection in humans. However, the mechanism of this disease has yet to be elucidated because of a lack of appropriate animal models. Here, we used a human CD34(+) cell-transplanted humanized mouse model and reproduced pathologic conditions resembling EBV-HLH in humans. By 10 weeks postinfection, two-thirds of the infected mice died after exhibiting high and persistent viremia, leukocytosis, IFN-γ cytokinenemia, normocytic anemia, and thrombocytopenia. EBV-infected mice also showed systemic organ infiltration by activated CD8(+) T cells and prominent hemophagocytosis in BM, spleen, and liver. Notably, the level of EBV load in plasma correlated directly with both the activation frequency of CD8(+) T cells and the level of IFN-γ in plasma. Moreover, high levels of EBV-encoded small RNA1 were detected in plasma of infected mice, reflecting what has been observed in patients. These findings suggest that our EBV infection model mirrors virologic, hematologic, and immunopathologic aspects of EBV-HLH. Furthermore, in contrast to CD8(+) T cells, we found a significant decrease of natural killer cells, myeloid dendritic cells, and plasmacytoid dendritic cells in the spleens of infected mice, suggesting that the collapse of balanced immunity associates with the progression of EBV-HLH pathogenesis.


Assuntos
Modelos Animais de Doenças , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Linfo-Histiocitose Hemofagocítica/virologia , Animais , Antígenos CD34/metabolismo , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , DNA Viral/genética , Progressão da Doença , Infecções por Vírus Epstein-Barr/imunologia , Humanos , Hibridização In Situ , Interferon gama/metabolismo , Ativação Linfocitária , Linfo-Histiocitose Hemofagocítica/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Viral/sangue , RNA Viral/genética , Viremia/imunologia , Viremia/virologia
20.
Proc Natl Acad Sci U S A ; 107(48): 20798-803, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21071676

RESUMO

Viral infectivity factor, an accessory protein encoded in the HIV-1 genome, induces G2 cell cycle arrest; however, the biological significance and mechanism(s) remain totally unclear. Here we demonstrate that the TP53 pathway is involved in Vif-mediated G2 cell cycle arrest. Vif enhances the stability and transcriptional activity of TP53 by blocking the MDM2-mediated ubiquitination and nuclear export of TP53. Furthermore, Vif causes G2 cell cycle arrest in a TP53-dependent manner. HXB2 Vif lacks these activities toward TP53 and cannot induce G2 cell cycle arrest. Using mutagenesis, we demonstrate that the critical residues for this function are located in the N-terminal region of Vif. Finally, we construct a mutant NL4-3 virus with an NL4-3/HXB2 chimeric Vif defective for the ability to induce cell cycle arrest and show that the mutant virus replicates less effectively than the wild-type NL4-3 virus in T cells expressing TP53. These data imply that Vif induces G2 cell cycle arrest through functional interaction with the TP53/MDM2 axis and that the G2 cell cycle arrest induced by Vif has a positive effect on HIV-1 replication. This report demonstrates the molecular mechanisms and the biological significance of Vif-mediated G2 cell cycle arrest for HIV-1 infection.


Assuntos
Fase G2 , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Replicação Viral/fisiologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Células HCT116 , Humanos , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Linfócitos T/virologia , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA