RESUMO
Sheeppox disease is associated with significant losses in sheep production world over. The sheep pox virus, the goatpox virus, and the lumpy skin disease virus cannot be distinguished by conventional serological tests. Identification of these pathogens needs molecular methods. In this study, seven genes viz. EEV maturation protein-F12L, Virion protein-D3R, RNA polymerase subunit-A5R, Virion core protein-A10L, EEV glycoprotein-A33R, VARV B22R homologue, and Kelch like protein-A55R that cover the start, middle, and end of the genome were selected. These genes were amplified from Roumanian-Fanar vaccine strain and Jaipur virulent strain, cloned, and sequenced. On analysis with the available database sequences, VARV B22R homologue was identified as a marker for phylogenetic reconstruction for classifying the sheeppox viruses of the ungulates. Further, divergence time dating with VARV B22R gene accurately predicted the sheeppox disease outbreak involving Jaipur virulent strain.
Assuntos
Capripoxvirus/classificação , Capripoxvirus/genética , Evolução Molecular , Mutação , Filogenia , Infecções por Poxviridae/virologia , Proteínas Virais/genética , Animais , Sequência de Bases , Clonagem Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA , Ovinos , Doenças dos Ovinos/virologiaRESUMO
The present investigation deals with the characterization of defective interfering (DI) particles of Peste-des-petits ruminants (PPR) vaccine Sungri/96 strain generated as a result of high MOI in Vero cells. During the serial 10 passages, infectivity titres drastically reduced from 6.5 to 2.25 log10TCID50/ml at high MOI. Further, attenuation of CPE with high MOI indicated generation of DI particles that resulted in no/slow progression of CPE during the late passages. Monoclonal antibody based cell ELISA indicated normal protein (N & H) packaging in samples with DI activity. At genomic level, inconsistency in amplicon intensity of H gene was observed in RT-PCR, indicating a possible defect of H gene. Further analysis of copy number of PPRV by RT-qPCR indicated intermittent fluctuations of viral genomic RNA copies. The significant decline of viral RNA copies with MOI 3 (314 copies) compared to low MOI (512804 copies), proved that higher DI multiplicities cause more interference with the replication process of the standard virus. Therefore, MOI is critical for manufacturing of vaccines. These investigations will help in upscaling of PPR vaccines in view of ongoing National and Global PPR control and eradication programme.
Assuntos
Vírus Defeituosos , Genoma Viral , Vírus da Peste dos Pequenos Ruminantes , RNA Viral , Vacinas Virais , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/crescimento & desenvolvimento , RNA Viral/genética , RNA Viral/imunologia , Células Vero , Vacinas Virais/genética , Vacinas Virais/imunologiaRESUMO
Here, we studied the in vivo expression of Th1 (IL2 and IFN gamma) and Th2 (IL4 and IL10) - cytokines and antiviral molecules - IRF3 and ISG15 in peripheral blood mononuclear cells in relation to antigen and antibody dynamics under Peste des petits ruminants virus (PPRV) vaccination, infection and challenge in both sheep and goats. Vaccinated goats were seropositive by 9 days post vaccination (dpv) while in sheep idiosyncratic response was observed between 9 and 14 dpv for different animals. Expression of PPRV N gene was not detected in PBMCs of vaccinated and vaccinated challenged groups of both species, but was detected in unvaccinated infected PBMCs at 9 and 14 days post infection. The higher viral load at 9 dpi coincided with the peak clinical signs of the disease. The peak in viral replication at 9 dpi correlated with significant expression of antiviral molecules IRF3, ISG15 and IFN gamma in both the species. With the progression of disease, the decrease in N gene expression also correlated with the decrease in expression of IRF3, ISG15 and IFN gamma. In the unvaccinated infected animals ISG15, IRF3, IFN gamma and IL10 expression was higher than vaccinated animals. The IFN gamma expression predominated over IL4 in both vaccinated and infected animals with the infected exhibiting a stronger Th1 response. The persistent upregulation of this antiviral molecular signature - ISG15 and IRF3 even after 2 weeks post vaccination, presumably reflects the ongoing stimulation of innate immune cells.
Assuntos
Citocinas/biossíntese , Regulação da Expressão Gênica/imunologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Tropismo/imunologia , Vacinação/veterinária , Vacinas Virais/imunologia , Eliminação de Partículas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/sangue , Antivirais/farmacologia , Citocinas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Genes Virais/genética , Doenças das Cabras/imunologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/virologia , Cabras , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Fator Regulador 3 de Interferon/biossíntese , Fator Regulador 3 de Interferon/genética , Interferon gama/biossíntese , Interferon gama/genética , Interleucina-10/biossíntese , Interleucina-10/genética , Interleucina-2/biossíntese , Interleucina-2/genética , Interleucina-4/biossíntese , Interleucina-4/genética , Cinética , Leucócitos Mononucleares/imunologia , Peste dos Pequenos Ruminantes/patologia , Peste dos Pequenos Ruminantes/prevenção & controle , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Ruminantes/imunologia , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/virologia , Fatores de Tempo , Vacinas Atenuadas/imunologia , Carga Viral , Replicação ViralRESUMO
Peste des petits ruminants is an important transboundary disease infecting small ruminants. Genome or gene sequence analysis enriches our knowledge about the evolution and transboundary nature of the causative agent of this disease, peste des petits ruminants virus (PPRV). Although analysis using whole genome sequences of pathogens leads to more precise phylogenetic relationships, when compared to individual genes or partial sequences, there is still a need to identify specific genes/genomic regions that can provide evolutionary assessments consistent with those predicted with full-length genome sequences. Here the virulent Izatnagar/94 PPRV isolate was assembled and compared to all available complete genome sequences (currently in the NCBI database) to estimate nucleotide diversity and to deduce evolutionary relationships between genes/genomic regions and the full length genomes. Our aim was to identify the preferred candidate gene for use as a phylogenetic marker, as well as to predict divergence time and explore PPRV phylogeography. Among all the PPRV genes, the H gene was identified to be the most diverse with the highest evolutionary relationship with the full genome sequences. Hence it is considered as the most preferred candidate gene for phylogenetic study with 93% identity set as a nucleotide cutoff. A whole genome nucleotide sequence cutoff value of 94% permitted specific differentiation of PPRV lineages. All the isolates examined in the study were found to have a most recent common ancestor in the late 19th or in the early 20th century with high posterior probability values. The Bayesian skyline plot revealed a decrease in genetic diversity among lineage IV isolates since the start of the vaccination program and the network analysis localized the ancestry of PPRV to Africa.
Assuntos
Genoma Viral , Doenças das Cabras/virologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Doenças dos Ovinos/virologia , Animais , Evolução Molecular , Cabras , Índia , Vírus da Peste dos Pequenos Ruminantes/classificação , Filogenia , Filogeografia , OvinosRESUMO
Peste des petits ruminants (PPR), is an acute transboundary viral disease of economic importance, affecting goats and sheep. Mass vaccination programs around the world resulted in the decline of PPR outbreaks. Sungri 96 is a live attenuated vaccine, widely used in Northern India against PPR. This vaccine virus, isolated from goat works efficiently both in sheep and goat. Global gene expression changes under PPR vaccine virus infection are not yet well defined. Therefore, in this study we investigated the host-vaccine virus interactions by infecting the peripheral blood mononuclear cells isolated from goat with PPRV (Sungri 96 vaccine virus), to quantify the global changes in the transcriptomic signature by RNA-sequencing. Viral genome of Sungri 96 vaccine virus was assembled from the PPRV infected transcriptome confirming the infection and demonstrating the feasibility of building a complete non-host genome from the blood transcriptome. Comparison of infected transcriptome with control transcriptome revealed 985 differentially expressed genes. Functional analysis showed enrichment of immune regulatory pathways under PPRV infection. Key genes involved in immune system regulation, spliceosomal and apoptotic pathways were identified to be dysregulated. Network analysis revealed that the protein - protein interaction network among differentially expressed genes is significantly disrupted in infected state. Several genes encoding TFs that govern immune regulatory pathways were identified to co-regulate the differentially expressed genes. These data provide insights into the host - PPRV vaccine virus interactome for the first time. Our findings suggested dysregulation of immune regulatory pathways and genes encoding Transcription Factors (TFs) that govern these pathways in response to viral infection.
Assuntos
Genoma Viral , Doenças das Cabras/imunologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Fatores de Transcrição , Vacinas Virais/imunologia , Animais , Doenças das Cabras/virologia , Cabras , Índia , Leucócitos Mononucleares/virologia , Dados de Sequência Molecular , Motivos de Nucleotídeos , Peste dos Pequenos Ruminantes/virologia , Transcriptoma , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genéticaRESUMO
Peste des petits ruminants (PPR) is an acute, highly contagious viral disease of goats and sheep, caused by the Peste des petits ruminants virus (PPRV). Earlier studies suggest the involvement of diverse regulatory mechanisms in PPRV infection. Methylation at N6 of Adenosine called m6A is a type RNA modification that influences various physiological and pathological phenomena. As the lung tissue represents the primary target organ of PPRV, the present study explored the m6A changes and their functional significance in PPRV disease pathogenesis. m6A-seq analysis revealed 1289 m6A peaks to be significantly altered in PPRV infected lung in comparison to normal lung, out of which 975 m6A peaks were hypomethylated and 314 peaks were hypermethylated. Importantly, hypomethylated genes were enriched in Interleukin-4 and Interleukin-13 signaling and various processes associated with extracellular matrix organization. Further, of the 843 differentially m6A-containing cellular transcripts, 282 transcripts were also found to be differentially expressed. Functional analysis revealed that these 282 transcripts are significantly enriched in signaling by Interleukins, extracellular matrix organization, cytokine signaling in the immune system, signaling by receptor tyrosine kinases, and Toll-like Receptor Cascades. We also found m6A reader HNRNPC and the core component of methyltransferase complex METTL14 to be highly upregulated than the m6A readers - HNRNPA2B1 and YTHDF1 at the transcriptome level. These findings suggest that alteration in the m6A landscape following PPRV is implicated in diverse processes including Interleukin signaling.
RESUMO
Peste des petits ruminants (PPR) characterized by fever, sore mouth, conjunctivitis, gastroenteritis, and pneumonia, is an acute, highly contagious viral disease of sheep and goats. The role of long non-coding RNAs (lncRNAs) in PPRV infection has not been explored to date. In this study, the transcriptome profiles of virulent Peste des petits ruminants virus (PPRV) infected goat tissues - lung and spleen were analyzed to identify the role of lncRNAs in PPRV infection. A total of 13,928 lncRNA transcripts were identified, out of which 170 were known lncRNAs. Intergenic lncRNAs (7625) formed the major chunk of the novel lncRNA transcripts. Differential expression analysis revealed that 15 lncRNAs (11 downregulated and 4 upregulated) in the PPRV infected spleen samples and 16 lncRNAs (13 downregulated and 3 upregulated) in PPRV infected lung samples were differentially expressed as compared to control. The differentially expressed lncRNAs (DElncRNAs) possibly regulate various immunological processes related to natural killer cell activation, antigen processing and presentation, and B cell activity, by regulating the expression of mRNAs through the cis- or trans-regulatory mechanism. Functional enrichment analysis of differentially expressed mRNAs (DEmRNAs) revealed enrichment of immune pathways and biological processes in concordance with the pathways in which correlated lncRNA-neighboring genes were enriched. The results suggest that a coordinated immune response is raised in both lung and spleen tissues of the goat through mRNA-lncRNA crosstalk.
Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , RNA Longo não Codificante , Animais , Doenças das Cabras/genética , Cabras/genética , Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/genética , RNA Longo não Codificante/genética , Ovinos/genéticaRESUMO
Virus infection alters host gene expression, therefore ideal and stable reference housekeeping genes are required to normalise the expression of other expressed host genes in quantitative real-time PCR (qRT-PCR). The suitable reference gene may vary in response to different viral infections in different hosts or cells. In the present study, we cultured primary lamb testis cells (LTC) and assessed the expression stability of seven widely used housekeeping genes (B2M, HMBS, HPRT1, HSP-90, POLR2A, 18s_RNA, GAPDH) as reference genes in Sheeppox virus (SPPV) infected and control (uninfected-0h) LTC at 0.5h, 4.0h, 8.0h, and 12.0h post-infection) using NormFinder, Bestkeeper, geNorm, and the comparative ΔCT method in RefFinder based on their expression levels. Analysis revealed that HSP90, 18s_RNA, HPRT, POLR2A, and B2M were the most stable genes from the panel in the individual analysis group in 0h, 0.5h, 4.0h, 8.0h, and 12.0h, respectively. Furthermore, B2M was shown to be the most stable reference gene in the combined control with the respective and overall infected groups, except the control group of 4.0hpi of SPPV infection. In this study, we selected the most suitable reference genes in LTC for particular time points of SPPV infection. The identified most suitable housekeeping gene can be used during normalization of expression of other targeted genes at aspecific time point of SPPV infection.
Assuntos
Capripoxvirus , Perfilação da Expressão Gênica , Animais , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Masculino , RNA Ribossômico 18S , Reação em Cadeia da Polimerase em Tempo Real/métodos , Padrões de Referência , Ovinos/genética , TestículoRESUMO
Immune response is a highly coordinated cascade involving all the subsets of peripheral blood mononuclear cells (PBMCs). In this study, RNA sequencing (RNA-Seq) analysis of PBMC subsets was done to delineate the systems biology behind immune protection of the vaccine in sheep and goats. The PBMC subsets studied were CD4+, CD8+, CD14+, CD21+, and CD335+ cells from day 0 and day 5 of sheep and goats vaccinated with Sungri/96 peste des petits ruminants virus. Assessment of the immune response processes enriched by the differentially expressed genes (DEGs) in all the subsets suggested a strong dysregulation toward the development of early inflammatory microenvironment, which is very much required for differentiation of monocytes to macrophages, and activation as well as the migration of dendritic cells into the draining lymph nodes. The protein-protein interaction networks among the antiviral molecules (IFIT3, ISG15, MX1, MX2, RSAD2, ISG20, IFIT5, and IFIT1) and common DEGs across PBMC subsets in both species identified ISG15 to be a ubiquitous hub that helps in orchestrating antiviral host response against peste des petits ruminants virus (PPRV). IRF7 was found to be the key master regulator activated in most of the subsets in sheep and goats. Most of the pathways were found to be inactivated in B lymphocytes of both the species, indicating that 5 days postvaccination (dpv) is too early a time point for the B lymphocytes to react. The cell-mediated immune response and humoral immune response pathways were found more enriched in goats than in sheep. Although animals from both species survived the challenge, a contrast in pathway activation was observed in CD335+ cells.IMPORTANCE Peste des petits ruminants (PPR) by PPR virus (PPRV) is an World Organisation for Animal Health (OIE)-listed acute, contagious transboundary viral disease of small ruminants. The attenuated Sungri/96 PPRV vaccine used all over India against this PPR provides long-lasting robust innate and adaptive immune response. The early antiviral response was found mediated through type I interferon-independent interferon-stimulated gene (ISG) expression. However, systems biology behind this immune response is unknown. In this study, in vivo transcriptome profiling of PBMC subsets (CD4+, CD8+, CD14+, CD21+, and CD335+) in vaccinated goats and sheep (at 5 days postvaccination) was done to understand this systems biology. Though there are a few differences in the systems biology across cells (specially the NK cells) between sheep and goats, the coordinated response that is inclusive of all the cell subsets was found to be toward the induction of a strong innate immune response, which is needed for an appropriate adaptive immune response.
RESUMO
In the present study, healthy goats and sheep (n = 5) that were confirmed negative for peste des petits ruminants virus (PPRV) antibodies by monoclonal antibody-based competitive ELISA and by serum neutralization test and for PPRV antigen by s-ELISA were vaccinated with Sungri/96. A quantitative study was carried out to compare the proteome of peripheral blood mononuclear cells (PBMCs) of vaccinated goat and sheep [5 days post-vaccination (dpv) and 14 dpv] vs. unvaccinated (0 day) to divulge the alteration in protein expression following vaccination. A total of 232 and 915 proteins were differentially expressed at 5 and 14 dpv, respectively, in goats. Similarly, 167 and 207 proteins were differentially expressed at 5 and 14 dpv, respectively, in sheep. Network generated by Ingenuity Pathway Analysis was "infectious diseases, antimicrobial response, and inflammatory response," which includes the highest number of focus molecules. The bio functions, cell-mediated immune response, and humoral immune response were highly enriched in goats at 5 dpv and at 14 dpv. At the molecular level, the immune response produced by the PPRV vaccine virus in goats is effectively coordinated and stronger than that in sheep, though the vaccine provides protection from virulent virus challenge in both. The altered expression of certain PBMC proteins especially ISG15 and IRF7 induces marked changes in cellular signaling pathways to coordinate host immune responses.
RESUMO
This study explored the transcriptome of lamb testis cells infected with sheeppox virus (SPPV) wild strain (WS) and vaccine strain (VS) at an immediate-early time. Most of the differentially expressed genes (DEGs) and differentially expressed highly connected (DEHC) gene network were found to be involved in SPPV-VS infection compared to SPPV-WS. Further, the signaling pathways were mostly involved in SPPV-VS infection than SPPV-WS. SPPV modulates the expression of several important host proteins such as CD40, FAS, ITGß1, ITGα1, Pak1, Pak2, CD14, ILK leading to viral attachment and entry; immune-related DEGs such as MAPK, JNK, ERK, NFKB, IKB, PI3K, STAT which provide optimal cellular condition for early viral protein expression; and FOXO3, ATF, CDKNA1, TCF, SRF, BDNF which help in inducing apoptosis and MPTP, BAD and Tp53 inhibits apoptosis or cell death at the immediate-early time. The results captured the specific genes and enabled to understand distinct pathogenic mechanisms employed by VS and WS of SPPV.
Assuntos
Capripoxvirus , Genes Precoces , Interações Hospedeiro-Patógeno/genética , Infecções por Poxviridae/genética , Doenças dos Ovinos/genética , Animais , Capripoxvirus/patogenicidade , Células Cultivadas , Expressão Gênica , Masculino , Infecções por Poxviridae/veterinária , Mapas de Interação de Proteínas/genética , Ovinos , Doenças dos Ovinos/virologiaRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral pathogen causing life-threatening diseases in humans. Interaction between the spike protein of SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) is a potential factor in the infectivity of a host. In this study, the interaction of SARS-CoV-2 spike protein with its receptor, ACE2, in different hosts was evaluated to predict the probability of viral entry. Phylogeny and alignment comparison of the ACE2 sequences did not lead to any meaningful conclusion on viral entry in different hosts. The binding ability between ACE2 and the spike protein was assessed to delineate several spike binding parameters of ACE2. A significant difference between the known infected and uninfected species was observed for six parameters. However, these parameters did not specifically categorize the Orders into infected or uninfected. Finally, a logistic regression model constructed using spike binding parameters of ACE2, revealed that in the mammalian class, most of the species of Carnivores, Artiodactyls, Perissodactyls, Pholidota, and Primates had a high probability of viral entry. However, among the Proboscidea, African elephants had a low probability of viral entry. Among rodents, hamsters were highly probable for viral entry with rats and mice having a medium to low probability. Rabbits have a high probability of viral entry. In Birds, ducks have a very low probability, while chickens seemed to have medium probability and turkey showed the highest probability of viral entry. The findings prompt us to closely follow certain species of animals for determining pathogenic insult by SARS-CoV-2 and for determining their ability to act as a carrier and/or disseminator.
RESUMO
Sungri/96 vaccine strain is considered the most potent vaccine providing long-term immunity against peste des petits ruminants (PPR) in India. Previous studies in our laboratory highlighted induction of robust antiviral response in an interferon independent manner at 48â¯h and 120â¯h post infection (p.i.). However, immune response at the earliest time point 6â¯h p.i. (time taken to complete one PPRV life cycle), in PBMCs infected with Sungri/96 vaccine virus has not been investigated. This study was taken up to understand the global gene expression profiling of goat PBMCs after Sungri/96 PPRV vaccine strain infection at 6â¯h post infection (p.i.). A total of 1926 differentially expressed genes (DEGs) were identified with 616 - upregulated and 1310 - downregulated. TLR7/TLR3, IRF7/IRF1, ISG20, IFIT1/IFIT2, IFITM3, IL27 and TREX1 were identified as key immune sensors and antiviral candidate genes. Interestingly, type I interferons (IFNα/ß) were not differentially expressed at this time point as well. TREX1, an exonuclease which inhibits type I interferons at the early stage of virus infection was found to be highly upregulated. IL27, an important antiviral host immune factor was significantly upregulated. ISG20, an antiviral interferon induced gene with exonuclease activity specific to ssRNA viruses was highly expressed. Functional profiling of DEGs showed significant enrichment of immune system processes with 233 genes indicating initiation of immune defense response in host cells. Protein interaction network showed important innate immune molecules in the immune network with high connectivity. The study highlights important immune and antiviral genes at the earliest time point.
Assuntos
Doenças das Cabras/prevenção & controle , Imunidade Inata/genética , Leucócitos Mononucleares/imunologia , Peste dos Pequenos Ruminantes/imunologia , Transcriptoma/imunologia , Vacinas Virais/imunologia , Animais , Antivirais/imunologia , Perfilação da Expressão Gênica/veterinária , Doenças das Cabras/imunologia , Cabras , Índia , Interferons/imunologia , Leucócitos Mononucleares/virologia , Vírus da Peste dos Pequenos Ruminantes/imunologiaRESUMO
In this study, transcriptome analysis of PPRV infected PBMC subsets-T helper cells, T cytotoxic cells, monocytes, and B lymphocytes was done to delineate their role in host response. PPRV was found to infect lymphocytes and not monocytes. The established receptor for PPRV-SLAM was found downregulated in lymphocytes and non-differentially expressed in monocytes. A profound deviation in the global gene expression profile with a large number of unique upregulated genes (851) and downregulated genes (605) was observed in monocytes in comparison to lymphocytes. ISGs-ISG15, Mx1, Mx2, RSAD2, IFIT3, and IFIT5 that play a role in antiviral response and the genes for viral sensors-MDA5, LGP2, and RIG1, were found to be upregulated in lymphocytes and downregulated in monocytes. The transcription factors-IRF-7 and STAT-1 that regulate expression of most of the ISGs were found activated in lymphocytes and not in monocytes. Interferon signaling pathway and RIG1 like receptor signaling pathway were found activated in lymphocytes and not in monocytes. This contrast in gene expression profiles and signaling pathways indicated the predominant role of lymphocytes in generating the antiviral response against PPRV in goats, thus, giving us new insights into host response to PPRV.
Assuntos
Linfócitos B/imunologia , Doenças das Cabras/imunologia , Monócitos/imunologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Perfilação da Expressão Gênica , Doenças das Cabras/virologia , Cabras/imunologia , Interações Hospedeiro-Patógeno/imunologia , Peste dos Pequenos Ruminantes/imunologia , Peste dos Pequenos Ruminantes/virologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismoRESUMO
BACKGROUND: The recently constructed river buffalo whole-genome radiation hybrid panel (BBURH5000) has already been used to generate preliminary radiation hybrid (RH) maps for several chromosomes, and buffalo-bovine comparative chromosome maps have been constructed. Here, we present the first-generation whole genome RH map (WG-RH) of the river buffalo generated from cattle-derived markers. The RH maps aligned to bovine genome sequence assembly Btau_4.0, providing valuable comparative mapping information for both species. RESULTS: A total of 3990 markers were typed on the BBURH5000 panel, of which 3072 were cattle derived SNPs. The remaining 918 were classified as cattle sequence tagged site (STS), including coding genes, ESTs, and microsatellites. Average retention frequency per chromosome was 27.3% calculated with 3093 scorable markers distributed in 43 linkage groups covering all autosomes (24) and the X chromosomes at a LOD >or= 8. The estimated total length of the WG-RH map is 36,933 cR5000. Fewer than 15% of the markers (472) could not be placed within any linkage group at a LOD score >or= 8. Linkage group order for each chromosome was determined by incorporation of markers previously assigned by FISH and by alignment with the bovine genome sequence assembly (Btau_4.0). CONCLUSION: We obtained radiation hybrid chromosome maps for the entire river buffalo genome based on cattle-derived markers. The alignments of our RH maps to the current bovine genome sequence assembly (Btau_4.0) indicate regions of possible rearrangements between the chromosomes of both species. The river buffalo represents an important agricultural species whose genetic improvement has lagged behind other species due to limited prior genomic characterization. We present the first-generation RH map which provides a more extensive resource for positional candidate cloning of genes associated with complex traits and also for large-scale physical mapping of the river buffalo genome.
Assuntos
Búfalos/genética , Bovinos/genética , Genoma , Mapeamento de Híbridos Radioativos , Animais , Cromossomos de Mamíferos/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genômica , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
The indigenous domestic duck (Anas platyrhynchos domestica) which is domesticated from Mallard (Anas platyrhynchos) contributes significantly to poor farming community in coastal and North Eastern regions of India. For conservation and maintenance of indigenous duck populations it is very important to know the existing genetic diversity and population structure. To unravel the population structure and genetic diversity among the five indigenous duck populations of India, the mitochondrial D-loop sequences of 120 ducks were analyzed. The sequence analysis by comparison of mtDNA D-loop region (470 bp) of five Indian duck populations revealed 25 mitochondrial haplotypes. Pairwise FST value among populations was 0.4243 (p < .01) and the range of nucleotide substitution per site (Dxy) between the five Indian duck populations was 0.00034-0.00555, and the net divergence (Da) was 0-0.00355. The phylogenetic analysis in the present study unveiled three clades. The analysis revealed genetic continuity among ducks of coastal region of the country which formed a separate group from the ducks of the inland area. Both coastal as well as the land birds revealed introgression of the out group breed Khaki Campbell, which is used for breed improvement programs in India. The observations revealed very less selection and a single matrilineal lineage of indigenous domestic ducks.
Assuntos
DNA Mitocondrial/química , Patos/classificação , Variação Genética , Análise de Sequência de DNA/métodos , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Patos/genética , Genética Populacional , Haplótipos , Índia , Conformação de Ácido Nucleico , FilogeniaRESUMO
Avian reoviruses, members of Orthoreovirus genus was known to cause diseases like tenosynovitis, runting-stunting syndrome in chickens. Among eight structural proteins, the proteins of S-class are mainly associated with viral arthritis but the significance of σB protein in arthritis is not established till date. In this infection pathological condition together with infection of joints often leads to arthritis because joints consists of cartilage which forms lubricating surface between two bones, and has limited metabolic, replicative and repair capacity. To establish the role of σB protein in arthritis, an in-vitro microarray study was conducted consisting four groups viz. virus infected and control; pDsRed-Express-N1-σB and empty pDs-Red transfected, CEF cells. With cut-off value as FC ≥2, p value <0.05, 6709 and 4026 numbers of DEGs in virus and σB, respectively were identified. The Ingenuity Pathway Analysis gave an idea about the involvement of σB protein in "osteoarthritis pathway", which was activated with z-score with 3.151. The pathway "Role of IL-17A in arthritis pathway" was also enriched with -log (p-value) 1.64. Among total 122 genes involved in osteoarthritis pathway, 28 upregulated and 11 downregulated DEGs were common to both virus and σB treated cells. Moreover, 14 upregulated and 7 downregulated were unique in σB transfected cells. Using qRT-PCR for IL-1B, BMP2, SMAD1, SPP1 genes, the microarray data was validated. We concluded that during ARV infection σB protein, if not fully partially leads to molecular alteration of various genes of host orchestrating the different molecular pattern in joints, leading to tenosynovitis syndrome.
RESUMO
In this study, the miRNAome and proteome of virulent Peste des petits ruminants virus (PPRV) infected goat peripheral blood mononuclear cells (PBMCs) were analyzed. The identified differentially expressed miRNAs (DEmiRNAs) were found to govern genes that modulate immune response based on the proteome data. The top 10 significantly enriched immune response processes were found to be governed by 98 genes. The top 10 DEmiRNAs governing these 98 genes were identified based on the number of genes governed by them. Out of these 10 DEmiRNAs, 7 were upregulated, and 3 were downregulated. These include miR-664, miR-2311, miR-2897, miR-484, miR-2440, miR-3533, miR-574, miR-210, miR-21-5p, and miR-30. miR-664 and miR-484 with proviral and antiviral activities, respectively, were upregulated in PPRV infected PBMCs. miR-210 that inhibits apoptosis was downregulated. miR-21-5p that decreases the sensitivity of cells to the antiviral activity of IFNs and miR-30b that inhibits antigen processing and presentation by primary macrophages were downregulated, indicative of a strong host response to PPRV infection. miR-21-5p was found to be inhibited on IPA upstream regulatory analysis of RNA-sequencing data. This miRNA that was also highly downregulated and was found to govern 16 immune response genes in the proteome data was selected for functional validation vis-a-vis TGFBR2 (TGF-beta receptor type-2). TGFBR2 that regulates cell differentiation and is involved in several immune response pathways was found to be governed by most of the identified immune modulating DEmiRNAs. The decreased luciferase activity in Dual Luciferase Reporter Assay indicated specific binding of miR-21-5p and miR-484 to their target thus establishing specific binding of the miRNAs to their targets.This is the first report on the miRNAome and proteome of virulent PPRV infected goat PBMCs.
Assuntos
Regulação da Expressão Gênica/imunologia , Leucócitos Mononucleares/imunologia , MicroRNAs/imunologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Animais , Cabras , Leucócitos Mononucleares/virologia , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Proteoma/imunologiaRESUMO
Identification of suitable candidate reference genes is an important prerequisite for validating the gene expression data obtained from downstream analysis of RNA sequencing using quantitative real time PCR (qRT-PCR). Though existence of a universal reference gene is myth, commonly used reference genes can be assessed for expression stability to confer their suitability to be used as candidate reference genes in gene expression studies. In this study, we evaluated the expression stability of ten most commonly used reference genes (GAPDH, ACTB, HSP90, HMBS, 18S rRNA, B2M, POLR2A, HPRT1, ACAC, YWHAZ) in fourteen different Peste des petits ruminants virus (PPRV) infected tissues of goats and sheep. RefFinder and RankAggreg software were used to deduce comprehensive ranking of reference genes. Our results suggested HMBS and B2M in goats and HMBS and HPRT1 in sheep can be used as suitable endogenous controls in gene expression studies of PPRV infection irrespective of tissues and condition as a whole, thus eliminating the use of tissue specific/ condition specific endogenous controls. We report for the first time suitable reference genes for gene expression studies in PPRV infected tissues. The reference genes determined here can be useful for future studies on gene expression in sheep and goat infected with PPRV, thus saving extra efforts and time of repeating the reference gene determination and validation.
Assuntos
Doenças das Cabras/patologia , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Doenças dos Ovinos/patologia , Animais , Regulação da Expressão Gênica , Doenças das Cabras/genética , Doenças das Cabras/virologia , Cabras , Hidroximetilbilano Sintase/genética , Hipoxantina Fosforribosiltransferase/genética , Pulmão/metabolismo , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Doenças dos Ovinos/genética , Doenças dos Ovinos/virologia , Baço/metabolismo , Microglobulina beta-2/genéticaRESUMO
Bluetongue is an economically important infectious, arthropod borne viral disease of domestic and wild ruminants, caused by Bluetongue virus (BTV). Sheep are considered the most susceptible hosts, while cattle, buffalo and goats serve as reservoirs. The viral pathogenesis of BTV resulting in presence or absence of clinical disease among different hosts is not clearly understood. In the present study, transcriptome of sheep and goats peripheral blood mononuclear cells infected with BTV-16 was explored. The differentially expressed genes (DEGs) identified were found to be significantly enriched for immune system processes - NFκB signaling, MAPK signaling, Ras signaling, NOD signaling, RIG signaling, TNF signaling, TLR signaling, JAK-STAT signaling and VEGF signaling pathways. Greater numbers of DEGs were found to be involved in immune system processes in goats than in sheep. Interestingly, the DEHC (differentially expressed highly connected) gene network was found to be dense in goats than in sheep. Majority of the DEHC genes in the network were upregulated in goats but down-regulated in sheep. The network of differentially expressed immune genes with the other genes further confirmed these findings. Interferon stimulated genes - IFIT1 (ISG56), IFIT2 (ISG54) and IFIT3 (ISG60) responsible for antiviral state in the host were found to be upregulated in both the species. STAT2 was the TF commonly identified to co-regulate the DEGs, with its network showing genes that are downregulated in sheep but upregulated in goats. The genes dysregulated and the networks perturbed in the present study indicate host variability with a positive shift in immune response to BTV in goats than in sheep.