Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31427303

RESUMO

Interkingdom polymicrobial biofilms formed by Gram-positive Staphylococcus aureus and Candida albicans pose serious threats of chronic systemic infections due to the absence of any common therapeutic target for their elimination. Herein, we present the structure-activity relationship (SAR) of membrane-targeting cholic acid-peptide conjugates (CAPs) against Gram-positive bacterial and fungal strains. Structure-activity investigations validated by mechanistic studies revealed that valine-glycine dipeptide-derived CAP 3 was the most effective broad-spectrum antimicrobial against S. aureus and C. albicans CAP 3 was able to degrade the preformed single-species and polymicrobial biofilms formed by S. aureus and C. albicans, and CAP 3-coated materials prevented the formation of biofilms. Murine wound and catheter infection models further confirmed the equally potent bactericidal and fungicidal effect of CAP 3 against bacterial, fungal, and polymicrobial infections. Taken together, these results demonstrate that CAPs, as potential broad-spectrum antimicrobials, can effectively clear the frequently encountered polymicrobial infections and can be fine-tuned further for future applications.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Ácido Cólico/farmacologia , Peptídeos/farmacologia , Animais , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Viabilidade Microbiana/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos
2.
Bioconjug Chem ; 30(3): 721-732, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669829

RESUMO

A major impediment to developing effective antimicrobials against Gram-negative bacteria like Salmonella is the ability of the bacteria to develop resistance against existing antibiotics and the inability of the antimicrobials to clear the intracellular bacteria residing in the gastrointestinal tract. As the critical balance of charge and hydrophobicity is required for effective membrane-targeting antimicrobials without causing any toxicity to mammalian cells, herein we report the synthesis and antibacterial properties of cholic acid-derived amphiphiles conjugated with alkyl chains of varied hydrophobicity. Relative to other hydrophobic counterparts, a compound with hexyl chain (6) acted as an effective antimicrobial against different Gram-negative bacteria. Apart from its ability to permeate the outer and inner membranes of bacteria; compound 6 can cross the cellular and lysosomal barriers of epithelial cells and macrophages and kill the facultative intracellular bacteria without disrupting the mammalian cell membranes. Oral delivery of compound 6 was able to clear the Salmonella-mediated gut infection and inflammation, and was able to combat persistent, stationary, and multi-drug-resistant clinical strains. Therefore, our study reveals the ability of cholic acid-derived amphiphiles to clear intracellular bacteria and Salmonella-mediated gut infection and inflammation.


Assuntos
Antibacterianos/administração & dosagem , Ácido Cólico/administração & dosagem , Inflamação/prevenção & controle , Enteropatias/prevenção & controle , Infecções por Salmonella/prevenção & controle , Administração Oral , Animais , Farmacorresistência Bacteriana Múltipla , Enteropatias/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Salmonella/isolamento & purificação , Salmonella/patogenicidade
3.
J Control Release ; 371: 43-66, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735395

RESUMO

Microneedles (MNs) are micron-sized needles, typically <2 mm in length, arranged either as an array or as single needle. These MNs offer a minimally invasive approach to ocular drug delivery due to their micron size (reducing tissue damage compared to that of hypodermic needles) and overcoming significant barriers in drug administration. While various types of MNs have been extensively researched, significant progress has been made in the use of hollow MNs (HMNs) for ocular drug delivery, specifically through suprachoroidal injections. The suprachoroidal space, situated between the sclera and choroid, has been targeted using optical coherence tomography-guided injections of HMNs for the treatment of uveitis. Unlike other MNs, HMNs can deliver larger volumes of formulations to the eye. This review primarily focuses on the use of HMNs in ocular drug delivery and explores their ocular anatomy and the distribution of formulations following potential HMN administration routes. Additionally, this review focuses on the influence of formulation characteristics (e.g., solution viscosity, particle size), HMN properties (e.g., bore or lumen diameter, MN length), and routes of administration (e.g., periocular transscleral, suprachoroidal, intravitreal) on the ocular distribution of drugs. Overall, this paper highlights the distinctive properties of HMNs, which make them a promising technology for improving drug delivery efficiency, precision, and patient outcomes in the treatment of ocular diseases.


Assuntos
Administração Oftálmica , Sistemas de Liberação de Medicamentos , Olho , Agulhas , Humanos , Animais , Olho/metabolismo , Preparações Farmacêuticas/administração & dosagem , Microinjeções/métodos , Microinjeções/instrumentação
4.
Curr Eye Res ; 48(2): 208-218, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36036478

RESUMO

Purpose: Intravitreal administration of drug molecules is one of the most common routes for treating posterior segment eye diseases. However, the properties of vitreous humour changes with the time. A number of ocular complications such as liquefaction of the vitreous humour, solidification of the vitreous humour in the central vitreous cavity and detachment of the limiting membrane due to the shrinking of vitreous humour are some of the factors that can drastically affect the efficacy of therapeutics delivered via intravitreal route. Although significant research has been conducted for studying the properties of vitreous humour and its changes during the ageing process, there have been limited work to understand the effect of these changes on therapeutic efficacy of intravitreal drug delivery systems. Therefore, in this review we discussed both the coomposition and characteristics of the vitreous humour, and their subsequent influence on intravitreal drug delivery.Methods: Articles were searched on Scopus, PubMed and Web of Science up to March 2022.Results: In this review, we discussed the biological composition and biomechanical properties of vitreous humour, methods to study the properties of vitreous humour and the changes in these properties and their relevance in ocular drug delivery field, with the aim to provide a useful insight into these aspects which can aid the process of development of novel intravitreal drug delivery systems.Conclusions: The composition and characteristics of the vitreous humour, and how these change during natural aging processes, directly influence intravitreal drug delivery. This review therefore highlights the importance of understanding the properties of the vitreous and identifies the need to achieve greater understanding of how changing properties of the vitreous affect the therapeutic efficacy of drugs administered for the treatment of posterior eye diseases.


Assuntos
Oftalmopatias , Corpo Vítreo , Humanos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Injeções Intravítreas
5.
Adv Drug Deliv Rev ; 201: 115082, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678648

RESUMO

In the field of ocular drug delivery, topical delivery remains the most common treatment option for managing anterior segment diseases, whileintraocular injectionsare the current gold standard treatment option for treating posterior segment diseases. Nonetheless, topical eye drops are associated with low bioavailability (<5%), and theintravitreal administration procedure is highly invasive, yielding poor patient acceptability. In both cases, frequent administration is currently required. As a result, there is a clear unmet need for sustained drug delivery to the eye, particularly in a manner that can be localised. Microneedles, which are patches containing an array of micron-scale needles (<1 mm), have the potential to meet this need. These platforms can enable localised drug delivery to the eye while enhancing penetration of drug molecules through key ocular barriers, thereby improving overall therapeutic outcomes. Moreover, the minimally invasive manner in which microneedles are applied could provide significant advantages over traditional intravitreal injections regarding patient acceptability. Considering the benefitsofthis novel ocular delivery system, this review provides an in-depth overviewofthe microneedle systems for ocular drug delivery, including the types of microneedles used and therapeutics delivered. Notably, we outline and discuss the current challenges associated with the clinical translation of these platforms and offer opinions on factors which should be considered to improve such transition from lab to clinic.


Assuntos
Sistemas de Liberação de Medicamentos , Olho , Humanos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Agulhas , Microinjeções/métodos , Administração Cutânea
6.
Drug Discov Today ; 28(9): 103676, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37343817

RESUMO

The constraints of delivering conventional drugs, biologics and cell-based therapeutics to target ocular sites necessitate the fabrication of novel drug delivery systems to treat diverse ocular diseases. Conventional ocular drug delivery approaches are prone to low bioavailability, poor penetration and degradation of therapeutics, including cell-based therapies, leading to the need for frequent topical applications or intraocular injections. However, owing to their exceptional structural properties, nanofibrous and microfibrous electrospun materials have gained significant interest in ocular drug delivery and biomaterial applications. This review covers the recent developments of electrospun fibers for the delivery of drugs, biologics, cells, growth factors and tissue regeneration in treating ocular diseases. The insights from this review can provide a thorough understanding of the selection of materials for the fabrication of nano- and/or micro-fibrous systems for ocular applications, with a particular interest in achieving controlled drug release and cell therapy. A detailed modality for fabricating different types of nano- and micro-fibers produced from electrospinning and factors influencing generation are also discussed.


Assuntos
Sistemas de Liberação de Medicamentos , Nanofibras , Materiais Biocompatíveis , Preparações Farmacêuticas , Nanofibras/química , Terapia Baseada em Transplante de Células e Tecidos
7.
Adv Sci (Weinh) ; 10(19): e2207512, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37166046

RESUMO

Clustered randomly interspaced short palindromic repeats (CRISPRs) and its associated endonuclease protein, i.e., Cas9, have been discovered as an immune system in bacteria and archaea; nevertheless, they are now being adopted as mainstream biotechnological/molecular scissors that can modulate ample genetic and nongenetic diseases via insertion/deletion, epigenome editing, messenger RNA editing, CRISPR interference, etc. Many Food and Drug Administration-approved and ongoing clinical trials on CRISPR adopt ex vivo strategies, wherein the gene editing is performed ex vivo, followed by reimplantation to the patients. However, the in vivo delivery of the CRISPR components is still under preclinical surveillance. This review has summarized the nonviral nanodelivery strategies for gene editing using CRISPR/Cas9 and its recent advancements, strategic points of view, challenges, and future aspects for tissue-specific in vivo delivery of CRISPR/Cas9 components using nanomaterials.


Assuntos
Edição de Genes , Nanoestruturas , Estados Unidos , Humanos , Sistemas CRISPR-Cas/genética , Endonucleases/genética , RNA Mensageiro
8.
Adv Drug Deliv Rev ; 201: 115055, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597586

RESUMO

The minimally-invasive and painless nature of microneedle (MN) application has enabled the technology to obviate many issues with injectable drug delivery. MNs not only administer therapeutics directly into the dermal and ocular space, but they can also control the release profile of the active compound over a desired period. To enable prolonged delivery of payloads, various MN types have been proposed and evaluated, including dissolving MNs, polymeric MNs loaded or coated with nanoparticles, fast-separable MNs hollow MNs, and hydrogel MNs. These intricate yet intelligent delivery platforms provide an attractive approach to decrease side effects and administration frequency, thus offer the potential to increase patient compliance. In this review, MN formulations that are loaded with various therapeutics for long-acting delivery to address the clinical needs of a myriad of diseases are discussed. We also highlight the design aspects, such as polymer selection and MN geometry, in addition to computational and mathematical modeling of MNs that are necessary to help streamline and develop MNs with high translational value and clinical impact. Finally, up-scale manufacturing and regulatory hurdles along with potential avenues that require further research to bring MN technology to the market are carefully considered. It is hoped that this review will provide insight to formulators and clinicians that the judicious selection of materials in tandem with refined design may offer an elegant approach to achieve sustained delivery of payloads through the simple and painless application of a MN patch.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Humanos , Polímeros/farmacologia , Agulhas , Administração Cutânea
9.
Int J Pharm ; 648: 123585, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952560

RESUMO

It is estimated that nearly a half of the world's population over 30 years old suffer from some kind of periodontal disease (PD). Although preventable, PD can pose a significant health burden to patients, causing from pain and discomfort to disfigurement and death. The management of PD often requires surgical procedures accompanied of systemic antibiotic and anti-inflammatory treatments. Curcumin (CUR), a potent anti-inflammatory and antimicrobial active, has shown great promise in the management of PD; however, its effects are often limited by its low bioavailability. In this work, we report the development of electrospun nanofibres (NFs) loaded with CUR nanocrystals (NCs) for the management of PD. NCs of 100 nm were obtained by media milling and loaded into dissolving polyvinyl alcohol NFs using electrospinning. The resultant NCs-in-NFs dissolved in water spontaneously, releasing NCs with a particle size of âˆ¼120 nm. The physiochemical characterisation of the systems indicated the absence of chemical interactions between drug and polymer, and nanofibres with an amorphous nature. In vitro release profiles demonstrated that the NCs had a significantly higher dissolution rate (∼100 % at day 40) than the control group (approximately 6 % at day 40), which consisted of NFs containing a physical mixture of the drug and stabiliser. Finally, mucosal deposition studies demonstrated a 10-fold higher capacity of the novel NCs-in-NFs system to deposit CUR ex vivo using excised neonatal porcine mucosal tissue, when compared to the control group.


Assuntos
Curcumina , Nanofibras , Nanopartículas , Recém-Nascido , Humanos , Animais , Suínos , Adulto , Curcumina/química , Nanofibras/química , Nanopartículas/química , Anti-Inflamatórios , Tamanho da Partícula , Portadores de Fármacos/química
10.
Biomater Adv ; 137: 212767, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929230

RESUMO

Intravitreal injections (IVT) are regarded as the gold standard for effective delivery of hydrophobic drugs to the back of the eye. However, as a highly invasive procedure, the injection itself may lead to poor patient compliance and severe complications. In this research work, a hybrid system of nanosuspensions (NS) and dissolving microneedles (MNs) was developed as an alternative to conventional hypodermic needles used in IVT for minimally invasive transscleral delivery of hydrophobic drugs. NS of a hydrophobic drug, triamcinolone acetonide (TA), were fabricated using a wet milling technique. TA NS optimised by central composite factorial design had a proven diameter of 246.65 ± 8.55 nm. After optimisation, TA NS were incorporated into MN arrays to form a bilayer structure by high-speed centrifugation. TA NS-loaded MNs were robust enough to pierce excised porcine sclera with insertion depth higher than 80% of the needle height and showed rapid dissolution (<3 min). In contrast, the plain TA-loaded MNs exhibited poor mechanical and insertion performances and took more than 8 min to be fully dissolved in the scleral tissue. Importantly, transscleral deposition studies showed that 56.46 ± 7.76 µg/mm2 of TA was deposited into the sclera after 5 min of NS-loaded MN application, which was 4.5-fold higher than plain drug-loaded MNs (12.56 ± 2.59 µg/mm2). An ex vivo distribution study revealed that MN arrays could promote the transscleral penetration of hydrophobic molecules with higher drug concentrations observed in the deep layer of the sclera. Moreover, the developed TA NS-loaded MN array was biocompatible with ocular tissues, as demonstrated using the hens egg-chorioallantoic membrane assay and cytotoxicity test. The results presented here demonstrate that the hybrid system of NS and dissolving MNs can provide a novel and promising technology to alleviate retinal diseases in a therapeutically effective and minimally invasive manner.


Assuntos
Galinhas , Sistemas de Liberação de Medicamentos , Animais , Sistemas de Liberação de Medicamentos/métodos , Feminino , Agulhas , Preparações Farmacêuticas , Esclera , Suínos , Triancinolona Acetonida
11.
J Ocul Pharmacol Ther ; 38(6): 433-448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35914241

RESUMO

Purpose: Age-related macular degeneration is a vision-threatening disorder affecting the posterior segment of the eye. Drug delivery to the posterior segment is challenging owing to the complex anatomical and physiological structure, necessitating monthly injections of antivascular endothelial growth factors. Thermoresponsive hydrogels provide sustained drug delivery and ease of injection, due to their sol-gel transition. Poly (N-isopropyl acrylamide) (PNIPAAm) is a widely researched thermoresponsive hydrogel; however, insufficient wet strength and a wide mesh network make it inept for the entrapment of small molecules. Methods: A novel approach of grafting PNIPAAm with chitosan is exploited. A chitosan concentration altered in 10%, 30%, and 50% compared to PNIPAAm is investigated for entrapment of a small-molecular weight, hydrophilic drug, sunitinib (SUN), a multiple tyrosine kinase receptor inhibitor. Furthermore, these hydrogels were characterized using 1H-NMR, FTIR, differential scanning calorimetry (DSC), and thermogravimetric analysis for chemical characterization and viscosity, swellability, syringeability, degradation, and In-vitro permeation using Franz-diffusion cell. Results: In-vitro drug release kinetics suggested that the release of SUN could be controlled with the percentage of chitosan grafting; however, gel strength (3%-5% w/v) of 30% Cs-g-PNIPAAm did not significantly affect percentage drug release. Sustained release of SUN was observed for 1 month. In-vitro permeation studies on porcine sclera suggested that a thermoresponsive gel of chitosan grafted PNIPAAm (Cs-g-PNIPAAm) was able to sustain the drug release by 40%, compared to SUN solution. Conclusions: The study indicates that the synthesized Cs-g-NIPAAm hydrogel has the potential to serve as a tailorable injectable platform for intrascleral drug delivery applications.


Assuntos
Quitosana , Hidrogéis , Animais , Quitosana/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Sunitinibe , Suínos , Temperatura
12.
Pharmaceutics ; 14(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559310

RESUMO

Microneedles are minimally invasive systems that can deliver drugs intradermally without pain and bleeding and can advantageously replace the hypodermal needles and oral routes of delivery. Deferasirox (DFS) is an iron chelator employed in several ailments where iron overload plays an important role in disease manifestation. In this study, DFS was formulated into a nanosuspension (NSs) through wet media milling employing PVA as a stabilizer and successfully loaded in polymeric dissolving microneedles (DMNs). The release studies for DFS-NS clearly showed a threefold increased dissolution rate compared to pure DFS. The mechanical characterization of DFS-NS-DMNs revealed that the system was sufficiently strong for efficacious skin penetration. Optical coherence tomography images confirmed an insertion of up to 378 µm into full-thickness porcine skin layers. The skin deposition studies showed 60% drug deposition from NS-DMN, which was much higher than from the DFS-NS transdermal patch (DFS-NS-TP) (without needles) or pure DFS-DMNs. Moreover, DFS-NS without DMNs did not deposit well inside the skin, indicating that DMNs played an important role in effectively delivering drugs inside the skin. Therefore, it is evident from the findings that loading DFS-NS into novel DMN devices can effectively deliver DFS transdermally.

13.
Front Immunol ; 12: 744396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795665

RESUMO

The global prevalence of autoimmune diseases is increasing. As a result, ocular complications, ranging from minor symptoms to sight-threatening scenarios, associated with autoimmune diseases have also risen. These ocular manifestations can result from the disease itself or treatments used to combat the primary autoimmune disease. This review provides detailed insights into the epidemiological factors affecting the increasing prevalence of ocular complications associated with several autoimmune disorders.


Assuntos
Doenças Autoimunes/complicações , Oftalmopatias/epidemiologia , Oftalmopatias/etiologia , Humanos
14.
Eur J Pharm Biopharm ; 159: 44-76, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359666

RESUMO

The development of microneedles (MNs) assisted drug delivery technologies have been highly active for more than two decades. The minimally invasive and self-administered MN technology bypasses many challenges associated with injectable drug delivery systems, by delivering the therapeutic materials directly into the dermal and ocular space and allowing the release of the active ingredient in a sustained or controlled manner. Different types of MNs (biodegradable solid/dissolving MNs and nanoparticle loaded/coated polymeric MNs or delivery by hollow MNs) have been envisioned for long-acting sustained delivery of therapeutic payloads, with the aim of reducing the side effects and administration frequency to improve the patient compliance. In this review, we covered the different types of MNs loaded with different nano/biotherapeutics for long-acting delivery for a wide range of potential clinical applications. We also outlined the future development scenario of such long-acting MN delivery systems for different disease conditions to achieve improved clinical benefit. Finally, we discussed the challenges lie ahead to realize the full potential of sustained-release long-acting MNs in the clinic.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Portadores de Fármacos/química , Adesivo Transdérmico , Administração Cutânea , Animais , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Humanos , Adesão à Medicação , Modelos Animais , Nanopartículas/química , Agulhas , Polímeros/química , Pele/metabolismo
15.
ACS Appl Bio Mater ; 4(9): 7332-7341, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006962

RESUMO

Infections caused by fungal species via their existence as biofilms on medical devices can cause organ damage via candidiasis and candidemia. Different Candida species like Candida albicans can pose a serious threat by resisting host's immune system and by developing drug resistance against existing antimycotic agents. Therefore, targeting of fungal membranes can be used as an alternative strategy to combat the fungal infections. Here, we present screening of different amphiphiles based on cholic acid against different Candida strains as these amphiphiles can act as potent membrane-targeting antimycotic agents. Structure-activity correlations, biochemical assays and electron microscopy studies showed that amphiphiles having 4 and 6 carbon chains are most potent, safe and can act on the fungal membranes. Candida albicans did not show emergence of drug resistance on repeated usage of these amphiphiles unlike fluconazole. We show that these amphiphiles can prevent the formation of biofilms and also have the ability to degrade preformed biofilms on different substrates including acrylic teeth. We further demonstrate that amphiphiles 4 and 6 can clear the Candida albicans wound infections and prevent the biofilm formation on indwelling devices in murine models. Therefore, amphiphiles derived from cholic acid and their coatings provide suitable alternatives for inhibiting the fungal infections.


Assuntos
Antifúngicos , Candidíase , Animais , Antifúngicos/farmacologia , Biofilmes , Candida , Candida albicans , Candidíase/tratamento farmacológico , Ácido Cólico/farmacologia , Camundongos
16.
ACS Cent Sci ; 5(10): 1648-1662, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31660434

RESUMO

Rapid proliferation of cancer cells assisted by endothelial cell-mediated angiogenesis and acquired inflammation at the tumor microenvironment (TME) lowers the success rate of chemotherapeutic regimens. Therefore, targeting these processes using localized delivery of a minimally toxic drug combination may be a promising strategy. Here, we present engineering of a biocompatible self-assembled lithocholic acid-dipeptide derived hydrogel (TRI-Gel) that can maintain sustained delivery of antiproliferating doxorubicin, antiangiogenic combretastatin-A4 and anti-inflammatory dexamethasone. Application of TRI-Gel therapy to a murine tumor model promotes enhanced apoptosis with a concurrent reduction in angiogenesis and inflammation, leading to effective abrogation of tumor proliferation and increased median survival with reduced drug resistance. In-depth RNA-sequencing analysis showed that TRI-Gel therapy induced transcriptome-wide alternative splicing of many genes responsible for oncogenic transformation including sphingolipid genes. We demonstrate that TRI-Gel therapy targets the reversal of a unique intron retention event in ß-glucocerebrosidase 1 (Gba1), thereby increasing the availability of functional Gba1 protein. An enhanced Gba1 activity elevates ceramide levels responsible for apoptosis and decreases glucosylceramides to overcome drug resistance. Therefore, TRI-Gel therapy provides a unique system that affects the TME via post-transcriptional modulations of sphingolipid metabolic genes, thereby opening a new and rational approach to cancer therapy.

17.
ACS Biomater Sci Eng ; 5(9): 4764-4775, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448819

RESUMO

Inappropriate and uncontrolled use of antibiotics results in the emergence of antibiotic resistance, thereby threatening the present clinical regimens to treat infectious diseases. Therefore, new antimicrobial agents that can prevent bacteria from developing drug resistance are urgently needed. Selective disruption of bacterial membranes is the most effective strategy for combating microbial infections as accumulation of genetic mutations will not allow for the emergence of drug resistance against these antimicrobials. In this work, we tested cholic acid (CA) derived amphiphiles tethered with different alkyl chains for their ability to combat Gram-positive bacterial infections. In-depth biophysical and biomolecular simulation studies suggested that the amphiphile with a hexyl chain (6) executes more effective interactions with Gram-positive bacterial membranes as compared to other hydrophobic counterparts. Amphiphile 6 is effective against multidrug resistant Gram-positive bacterial strains as well and does not allow the adherence of S. aureus on amphiphile 6 coated catheters implanted in mice. Further, treatment of wound infections with amphiphile 6 clears the bacterial infections. Therefore, the current study presents strategic guidelines in design and development of CA-derived membrane-targeting antimicrobials for Gram-positive bacterial infections.

18.
J Med Chem ; 62(4): 1875-1886, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30688460

RESUMO

The presence of lipopolysaccharide and emergence of drug resistance make the treatment of Gram-negative bacterial infections highly challenging. Herein, we present the synthesis and antibacterial activities of cholic acid-peptide conjugates (CAPs), demonstrating that valine-glycine dipeptide-derived CAP 3 is the most effective antimicrobial. Molecular dynamics simulations and structural analysis revealed that a precise intramolecular network of CAP 3 is maintained in the form of evolving edges, suggesting intramolecular connectivity. Further, we found high conformational rigidity in CAP 3 that confers maximum perturbations in bacterial membranes relative to other small molecules. Interestingly, CAP 3-coated catheters did not allow the formation of biofilms in mice, and treatment of wound infections with CAP 3 was able to clear the bacterial infection. Our results demonstrate that molecular conformation and internal connectivity are critical parameters to describe the antimicrobial nature of compounds, and the analysis presented here may serve as a general principle for the design of future antimicrobials.


Assuntos
Antibacterianos/uso terapêutico , Ácidos Cólicos/uso terapêutico , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Peptídeos/uso terapêutico , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ácidos Cólicos/síntese química , Ácidos Cólicos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/fisiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/metabolismo , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA