Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053766

RESUMO

Natural herbicides that are based on allelopathy of compounds, can offer effective alternatives to chemical herbicides towards sustainable agricultural practices. Nerolidol, a sesquiterpenoid alcohol synthesized by many plant families, was shown to be the most effective allelopathic compound in a preliminary screening performed with several other sesquiterpenoids. In the present study, Arabidopsis thaliana seedlings were treated for 14 d with various cis-nerolidol concentrations (0, 50, 100, 200, 400, and 800 µM) to investigate its effects on root growth and morphology. To probe the underlying changes in root metabolome, we conducted untargeted gas chromatography mass spectrometry (GC-MS) based metabolomics to find out the specificity or multi-target action of this sesquiterpenoid alcohol. Oxidative stress (measured as levels of H2O2 and malondialdehyde (MDA) by-product) and antioxidant enzyme activities, i.e., superoxide dismutase (SOD) and catalase (CAT) were also evaluated in the roots. Nerolidol showed an IC50 (120 µM), which can be considered low for natural products. Nerolidol caused alterations in root morphology, brought changes in auxin balance, induced changes in sugar, amino acid, and carboxylic acid profiles, and increased the levels of H2O2 and MDA in root tissues in a dose-dependent manner. Several metabolomic-scale changes induced by nerolidol support the multi-target action of nerolidol, which is a positive feature for a botanical herbicide. Though it warrants further mechanistic investigation, nerolidol is a promising compound for developing a new natural herbicide.

2.
Plant Sci ; 211: 61-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23987812

RESUMO

Betacyanins are the major pigments present in Amaranthus tricolor, a leafy vegetable consumed globally. The terminal glycosylation of the aglycone betanidin is an important step in the biosynthesis of this natural red antioxidant pigment. A betanidin 5-O-glucosyltransferase (BGT) was fully purified to 134 folds (specific activity, 265.2 nkat mg(-1)) from the red amaranth by ammonium sulfate precipitation followed by hydrophobic interaction, anion exchange and size exclusion chromatography. Homogeneity of the purified protein was confirmed by 2-dimensional polyacrylamide gel electrophoresis (2D PAGE). The molecular weight of the enzyme determined by liquid chromatography-mass spectrometry (LC-MS) was found to be 62.8 kDa. Furthermore, the enzyme glycosylated flavonoids (kaempferol and quercetin) but not anthocyanidins, presence of which is mutually exclusive to betacyanin accumulating plants. The apparent Km (344±2.34 µM) and Vmax (17.24 µM min(-1)) of the enzyme were determined by LC-MS/MS. Peptide mass fingerprinting of the purified protein showed 38.4% coverage of peptide masses with anthocyanidin 3-O-glucosyltransferase from Zea mays. Study on this purified enzyme, for the first time, revealed its role of glycosylation in biosynthesis of betacyanin in A. tricolor and indicates promiscuous substrate-specificity.


Assuntos
Amaranthus/enzimologia , Betacianinas/metabolismo , Flavonoides/metabolismo , Glucosiltransferases/isolamento & purificação , Amaranthus/química , Biotransformação , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Glucosiltransferases/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Peso Molecular , Mapeamento de Peptídeos , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Sais , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA