Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 106(33): 13780-4, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19667177

RESUMO

Modern means of communication rely on electric fields and currents to carry the flow of information. In contrast, biological systems follow a different paradigm that uses ion gradients and currents, flows of small molecules, and membrane electric potentials. Living organisms use a sophisticated arsenal of membrane receptors, channels, and pumps to control signal transduction to a degree that is unmatched by manmade devices. Electronic circuits that use such biological components could achieve drastically increased functionality; however, this approach requires nearly seamless integration of biological and manmade structures. We present a versatile hybrid platform for such integration that uses shielded nanowires (NWs) that are coated with a continuous lipid bilayer. We show that when shielded silicon NW transistors incorporate transmembrane peptide pores gramicidin A and alamethicin in the lipid bilayer they can achieve ionic to electronic signal transduction by using voltage-gated or chemically gated ion transport through the membrane pores.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas Metálicas/química , Silício/química , Alameticina/química , Antibacterianos/química , Eletroquímica/métodos , Gramicidina/química , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Ligantes , Bicamadas Lipídicas/química , Modelos Químicos , Nanotecnologia/métodos , Nanofios , Transdução de Sinais
2.
Nano Lett ; 10(5): 1812-6, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20426455

RESUMO

We report a hybrid bionanoelectronic transistor that has a local ATP-powered protein gate. ATP-dependent activity of a membrane ion pump, Na(+)/K(+)-ATPase, embedded in a lipid membrane covering the carbon nanotube, modulates the transistor output current by up to 40%. The ion pump gates the device by shifting the pH of the water layer between the lipid bilayer and nanotube surface. This transistor is a versatile bionanoelectronic platform that can incorporate other membrane proteins.


Assuntos
Trifosfato de Adenosina/química , Materiais Biomiméticos , Bicamadas Lipídicas/química , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , ATPase Trocadora de Sódio-Potássio/química , Transistores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Ativação do Canal Iônico , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Processamento de Sinais Assistido por Computador
3.
Methods Mol Biol ; 751: 533-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21674353

RESUMO

Biological molecules perform a sophisticated array of transport and signaling functions that rival anything that the modern electronics industry can create. Incorporating such building blocks into nanoelectronic devices could enable new generations of electronic circuits that use biomimetics to perform complicated tasks. Such types of circuits could ultimately blur the interface between living biological organisms and synthetic structures. Our laboratory has recently developed a versatile and flexible platform for integrating ion channels and pumps into single-walled carbon nanotube (SWNT) and silicon nanowire (SiNW) transistor devices, in which membrane proteins are embedded in a lipid bilayer shell covering the nanotube or nanowire component. In this chapter, we provide details for the fabrication of these devices and outline procedures for incorporating biological molecules into them. In addition, we also provide several examples of the use of these devices to couple biological transport to electronic signaling.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nanotecnologia/instrumentação , Nanotubos/química , Nanofios/química , Transistores Eletrônicos , Alameticina/química , Alameticina/metabolismo , Condutividade Elétrica , Eletroquímica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Gramicidina/química , Gramicidina/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Transporte de Íons , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanotubos de Carbono/química , Porosidade , Silício/química , Volatilização
4.
Nano Lett ; 9(3): 1121-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19203205

RESUMO

Nanoscale electrodes based on one-dimensional inorganic conductors could possess significant advantages for electrochemical measurements over their macroscopic counterparts in a variety of electrochemical applications. We show that the efficiency of the electrodes constructed of individual highly doped silicon nanowires greatly exceeds the efficiency of flat Si electrodes. Modification of the surfaces of the nanowire electrodes with phospholipid bilayers produces an efficient biocompatible barrier to transport of the solution redox species to the nanoelectrode surface. Incorporating functional alpha-hemolysin protein pores in the lipid bilayer results in a partial recovery of the Faradic current due to the specific transport through the protein pore. These assemblies represent a robust and versatile platform for building a new generation of highly specific biosensors and nano/bioelectronic devices.


Assuntos
Materiais Biocompatíveis/química , Nanofios/química , Silício/química , Animais , Biofísica/métodos , Técnicas Biossensoriais , Eletroquímica/métodos , Eletrodos , Proteínas Hemolisinas/química , Humanos , Bicamadas Lipídicas/química , Fosfolipídeos/química , Compostos de Prata/química
5.
Nano Lett ; 8(7): 1949-53, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18507478

RESUMO

In most Si nanowire (NW) applications, Si oxide provides insulation or a medium of controlled electron tunneling. This work revealed both similarities and differences in the dielectric properties of NW oxide compared with that grown on wafers. The interface barrier to electron transit from the semiconductor to the dielectric and the threshold electric field for current flow are quite similar to those in the planar geometry. This is not true for the lowest currents measured which are not uniformly distributed, indicating variations of trap density in the gap of NW oxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA