RESUMO
Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.
Assuntos
Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Receptor de Insulina/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator C1 de Célula Hospedeira/antagonistas & inibidores , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/metabolismo , Interferência de RNA , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , Receptor de Insulina/química , Transdução de Sinais/efeitos dos fármacosRESUMO
Extracellular proTGF-ß is covalently linked to "milieu" molecules in the matrix or on cell surfaces and is latent until TGF-ß is released by integrins. Here, we show that LRRC33 on the surface of microglia functions as a milieu molecule and enables highly localized, integrin-αVß8-dependent TGF-ß activation. Lrrc33-/- mice lack CNS vascular abnormalities associated with deficiency in TGF-ß-activating integrins but have microglia with a reactive phenotype and after 2 months develop ascending paraparesis with loss of myelinated axons and death by 5 months. Whole bone marrow transplantation results in selective repopulation of Lrrc33-/- brains with WT microglia and halts disease progression. The phenotypes of WT and Lrrc33-/- microglia in the same brain suggest that there is little spreading of TGF-ß activated from one microglial cell to neighboring microglia. Our results suggest that interactions between integrin-bearing cells and cells bearing milieu molecule-associated TGF-ß provide localized and selective activation of TGF-ß.
Assuntos
Proteínas de Transporte/metabolismo , Microglia/metabolismo , Sistema Nervoso/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Axônios/metabolismo , Transplante de Medula Óssea , Encéfalo/metabolismo , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Células Cultivadas , Integrinas/metabolismo , Estimativa de Kaplan-Meier , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Mutagênese Sítio-Dirigida , Doenças Neurodegenerativas/mortalidade , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Filogenia , Ligação Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Fator de Crescimento Transformador beta/genéticaRESUMO
Myeloid cell heterogeneity is known, but whether it is cell-intrinsic or environmentally-directed remains unclear. Here, an inducible/reversible system pausing myeloid differentiation allowed the definition of clone-specific functions that clustered monocytes into subsets with distinctive molecular features. These subsets were orthogonal to the classical/nonclassical categorization and had inherent, restricted characteristics that did not shift under homeostasis, after irradiation, or with infectious stress. Rather, their functional fate was constrained by chromatin accessibility established at or before the granulocyte-monocyte or monocyte-dendritic progenitor level. Subsets of primary monocytes had differential ability to control distinct infectious agents in vivo. Therefore, monocytes are a heterogeneous population of functionally restricted subtypes defined by the epigenome of their progenitors that are differentially selected by physiologic challenges with limited plasticity to transition from one subset to another.
Assuntos
Granulócitos , Monócitos , Células Progenitoras Mieloides , Epigenoma , Epigênese Genética , Diferenciação Celular/genéticaRESUMO
Quiescence (G0) is a ubiquitous stress response through which cells enter reversible dormancy, acquiring distinct properties including reduced metabolism, resistance to stress, and long life. G0 entry involves dramatic changes to chromatin and transcription of cells, but the mechanisms coordinating these processes remain poorly understood. Using the fission yeast, here, we track G0-associated chromatin and transcriptional changes temporally and show that as cells enter G0, their survival and global gene expression programs become increasingly dependent on Clr4/SUV39H, the sole histone H3 lysine 9 (H3K9) methyltransferase, and RNAi proteins. Notably, G0 entry results in RNAi-dependent H3K9 methylation of several euchromatic pockets, prior to which Argonaute1-associated small RNAs from these regions emerge. Overall, our data reveal another function for constitutive heterochromatin proteins (the establishment of the global G0 transcriptional program) and suggest that stress-induced alterations in Argonaute-associated sRNAs can target the deployment of transcriptional regulatory proteins to specific sequences.
Assuntos
Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Eucromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , RNA Interferente Pequeno/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Argonautas/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Eucromatina/ultraestrutura , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Histona-Lisina N-Metiltransferase , Histonas/genética , Histonas/metabolismo , Metiltransferases/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fase de Repouso do Ciclo Celular/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição GênicaRESUMO
The layered compartmentalization of synaptic connections, a common feature of nervous systems, underlies proper connectivity between neurons and enables parallel processing of neural information. However, the stepwise development of layered neuronal connections is not well understood. The medulla neuropil of the Drosophila visual system, which comprises 10 discrete layers (M1 to M10), where neural computations underlying distinct visual features are processed, serves as a model system for understanding layered synaptic connectivity. The first step in establishing layer-specific connectivity in the outer medulla (M1 to M6) is the innervation by lamina (L) neurons of one of two broad, primordial domains that will subsequently expand and transform into discrete layers. We previously found that the transcription factor dFezf cell-autonomously directs L3 lamina neurons to their proper primordial broad domain before they form synapses within the developing M3 layer. Here, we show that dFezf controls L3 broad domain selection through temporally precise transcriptional repression of the transcription factor slp1 (sloppy paired 1). In wild-type L3 neurons, slp1 is transiently expressed at a low level during broad domain selection. When dFezf is deleted, slp1 expression is up-regulated, and ablation of slp1 fully rescues the defect of broad domain selection in dFezf-null L3 neurons. Although the early, transient expression of slp1 is expendable for broad domain selection, it is surprisingly necessary for the subsequent L3 innervation of the M3 layer. DFezf thus functions as a transcriptional repressor to coordinate the temporal dynamics of a transcriptional cascade that orchestrates sequential steps of layer-specific synapse formation.
Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/fisiologia , Proteínas Repressoras/metabolismo , Sinapses/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vias Visuais/crescimento & desenvolvimento , Animais , Drosophila melanogaster/genética , Neurônios/metabolismo , Mutação Puntual , Proteínas Repressoras/genética , Vias Visuais/citologiaRESUMO
Pancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo. Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify nongenetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients.
Assuntos
Carcinoma Ductal Pancreático/metabolismo , Glutamato-Amônia Ligase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Estabilidade Enzimática , Glutamato-Amônia Ligase/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genéticaRESUMO
While mitochondrial function is essential for life in all multicellular organisms, a mild impairment of mitochondrial function can extend longevity in model organisms. By understanding the molecular mechanisms involved, these pathways might be targeted to promote healthy aging. In studying two long-lived mitochondrial mutants in C. elegans, we found that disrupting subunits of the mitochondrial electron transport chain results in upregulation of genes involved in innate immunity, which is driven by the mitochondrial unfolded protein response (mitoUPR) but also dependent on the canonical p38-mediated innate immune signaling pathway. Both of these pathways are required for the increased resistance to bacterial pathogens and extended longevity of the long-lived mitochondrial mutants, as is the FOXO transcription factor DAF-16. This work demonstrates that both the p38-mediated innate immune signaling pathway and the mitoUPR act in concert on the same innate immunity genes to promote pathogen resistance and longevity and that input from the mitochondria can extend longevity by signaling through these pathways. This indicates that multiple evolutionarily conserved genetic pathways controlling innate immunity also function to modulate lifespan.
Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Imunidade Inata/fisiologia , Longevidade/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Gene expression profiling of the postmortem human brain is part of the effort to understand the neuropathological underpinnings of schizophrenia. Existing microarray studies have identified a large number of genes as candidates, but efforts to generate an integrated view of molecular and cellular changes underlying the illness are few. Here, we have applied a novel approach to combining coexpression data across seven postmortem human brain studies of schizophrenia. RESULTS: We generated separate coexpression networks for the control and schizophrenia prefrontal cortex and found that differences in global network properties were small. We analyzed gene coexpression relationships of previously identified differentially expressed 'schizophrenia genes'. Evaluation of network properties revealed differences for the up- and down-regulated 'schizophrenia genes', with clustering coefficient displaying particularly interesting trends. We identified modules of coexpressed genes in each network and characterized them according to disease association and cell type specificity. Functional enrichment analysis of modules in each network revealed that genes with altered expression in schizophrenia associate with modules representing biological processes such as oxidative phosphorylation, myelination, synaptic transmission and immune function. Although a immune-function enriched module was found in both networks, many of the genes in the modules were different. Specifically, a decrease in clustering of immune activation genes in the schizophrenia network was coupled with the loss of various astrocyte marker genes and the schizophrenia candidate genes. CONCLUSION: Our novel network-based approach for evaluating gene coexpression provides results that converge with existing evidence from genetic and genomic studies to support an immunological link to the pathophysiology of schizophrenia.
Assuntos
Perfilação da Expressão Gênica/métodos , Córtex Pré-Frontal , Esquizofrenia/genética , Autopsia , Análise por Conglomerados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , TranscriptomaRESUMO
Mutations that extend lifespan are associated with enhanced resistance to stress. To better understand the molecular mechanisms underlying this relationship, we directly compared lifespan extension, resistance to external stressors, and gene expression in a panel of nine long-lived Caenorhabditis elegans mutants from different pathways of lifespan extension. All of the examined long-lived mutants exhibited increased resistance to one or more types of stress. Resistance to each of the examined types of stress had a significant, positive correlation with lifespan, with bacterial pathogen resistance showing the strongest relationship. Analysis of transcriptional changes indicated that all of the examined long-lived mutants showed a significant upregulation of multiple stress response pathways. Interestingly, there was a very significant overlap between genes highly correlated with stress resistance and genes highly correlated with longevity, suggesting that the same genetic pathways drive both phenotypes. This was especially true for genes correlated with bacterial pathogen resistance, which showed an 84% overlap with genes correlated with lifespan. To further explore the relationship between innate immunity and longevity, we disrupted the p38-mediated innate immune signaling pathway in each of the long-lived mutants and found that this pathway is required for lifespan extension in eight of nine mutants. Overall, our results demonstrate a strong correlation between stress resistance and longevity that results from the high degree of overlap in genes contributing to each phenotype. Moreover, these findings demonstrate the importance of the innate immune system in lifespan determination and indicate that the same underlying genes drive both immunity and longevity.
Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Longevidade/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição/metabolismo , Caenorhabditis elegans/fisiologia , Imunidade Inata/genética , Fatores de Transcrição Forkhead/metabolismoRESUMO
Post-translational modifications of histone tails alter chromatin accessibility to regulate gene expression. Some viruses exploit the importance of histone modifications by expressing histone mimetic proteins that contain histone-like sequences to sequester complexes that recognize modified histones. Here we identify an evolutionarily conserved and ubiquitously expressed, endogenous mammalian protein Nucleolar protein 16 (NOP16) that functions as a H3K27 mimic. NOP16 binds to EED in the H3K27 trimethylation PRC2 complex and to the H3K27 demethylase JMJD3. NOP16 knockout selectively globally increases H3K27me3, a heterochromatin mark, without altering methylation of H3K4, H3K9, or H3K36 or acetylation of H3K27. NOP16 is overexpressed and linked to poor prognosis in breast cancer. Depletion of NOP16 in breast cancer cell lines causes cell cycle arrest, decreases cell proliferation and selectively decreases expression of E2F target genes and of genes involved in cell cycle, growth and apoptosis. Conversely, ectopic NOP16 expression in triple negative breast cancer cell lines increases cell proliferation, cell migration and invasivity in vitro and tumor growth in vivo , while NOP16 knockout or knockdown has the opposite effect. Thus, NOP16 is a histone mimic that competes with Histone H3 for H3K27 methylation and demethylation. When it is overexpressed in cancer, it derepresses genes that promote cell cycle progression to augment breast cancer growth.
RESUMO
The mitochondrial unfolded protein response (mitoUPR) is an evolutionarily conserved pathway that responds to mitochondria insults through transcriptional changes, mediated by the transcription factor ATFS-1/ATF-5, which acts to restore mitochondrial homeostasis. In this work, we characterized the role of ATFS-1 in responding to organismal stress. We found that activation of ATFS-1 is sufficient to cause up-regulation of genes involved in multiple stress response pathways including the DAF-16-mediated stress response pathway, the cytosolic unfolded protein response, the endoplasmic reticulum unfolded protein response, the SKN-1-mediated oxidative stress response pathway, the HIF-1-mediated hypoxia response pathway, the p38-mediated innate immune response pathway, and antioxidant genes. Constitutive activation of ATFS-1 increases resistance to multiple acute exogenous stressors, whereas disruption of atfs-1 decreases stress resistance. Although ATFS-1-dependent genes are up-regulated in multiple long-lived mutants, constitutive activation of ATFS-1 decreases lifespan in wild-type animals. Overall, our work demonstrates that ATFS-1 serves a vital role in organismal survival of acute stressors through its ability to activate multiple stress response pathways but that chronic ATFS-1 activation is detrimental for longevity.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/genética , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Imunidade Inata , Longevidade/genética , Mutação , Estresse Oxidativo/genética , Transdução de Sinais/imunologia , Estresse Fisiológico/imunologia , Fatores de Transcrição/genética , Regulação para Cima/genéticaRESUMO
Target of rapamycin complex 1 (TORC1) and AMP-activated protein kinase (AMPK) antagonistically modulate metabolism and aging. However, how they coordinate to determine longevity and if they act via separable mechanisms is unclear. Here, we show that neuronal AMPK is essential for lifespan extension from TORC1 inhibition, and that TORC1 suppression increases lifespan cell non autonomously via distinct mechanisms from global AMPK activation. Lifespan extension by null mutations in genes encoding raga-1 (RagA) or rsks-1 (S6K) is fully suppressed by neuronal-specific rescues. Loss of RAGA-1 increases lifespan via maintaining mitochondrial fusion. Neuronal RAGA-1 abrogation of raga-1 mutant longevity requires UNC-64/syntaxin, and promotes mitochondrial fission cell nonautonomously. Finally, deleting the mitochondrial fission factor DRP-1 renders the animal refractory to the pro-aging effects of neuronal RAGA-1. Our results highlight a new role for neuronal TORC1 in cell nonautonomous regulation of longevity, and suggest TORC1 in the central nervous system might be targeted to promote healthy aging.
Assuntos
Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Longevidade , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Dinâmica Mitocondrial , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , AnimaisRESUMO
Pharmaceutical breakthroughs for anxiety have been lackluster in the last half-century. Converging behavior and limbic molecular heterogeneity has the potential to revolutionize biomarker-driven interventions. However, current in vivo models too often deploy artificial systems including directed evolution, mutations and fear induction, which poorly mirror clinical manifestations. Here, we explore transcriptional heterogeneity of the amygdala in isogenic mice using an unbiased multi-dimensional computational approach that segregates intra-cohort reactions to moderate situational adversity and intersects it with high content molecular profiling. We show that while the computational approach stratifies known features of clinical anxiety including nitric oxide, opioid and corticotropin signaling, previously unrecognized druggable biomarkers emerge, such as calpain11 and scand1. Through ingenuity pathway analyses, we further describe a role for neurosteroid estradiol signaling, heat shock proteins, ubiquitin ligases and lipid metabolism. In addition, we report a remarkable behavioral pattern that maps to molecular features of anxiety in mice through counterphobic social attitudes, which manifest as increased, yet spatially distant socialization. These findings provide an unbiased approach for interrogating anxiolytics, and hint toward biomarkers underpinning behavioral and social patterns that merit further exploration.
Assuntos
Tonsila do Cerebelo , Ansiedade , Comportamento Animal , Modelos Biológicos , Neurociências/métodos , Comportamento Social , Socialização , Transcrição Gênica , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Ansiedade/genética , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBARESUMO
BACKGROUND: The availability of various high-throughput experimental and computational methods allows biologists to rapidly infer functional relationships between genes. It is often necessary to evaluate these predictions computationally, a task that requires a reference database for functional relatedness. One such reference is the Gene Ontology (GO). A number of groups have suggested that the semantic similarity of the GO annotations of genes can serve as a proxy for functional relatedness. Here we evaluate a simple measure of semantic similarity, term overlap (TO). RESULTS: We computed the TO for randomly selected gene pairs from the mouse genome. For comparison, we implemented six previously reported semantic similarity measures that share the feature of using computation of probabilities of terms to infer information content, in addition to three vector based approaches and a normalized version of the TO measure. We find that the overlap measure is highly correlated with the others but differs in detail. TO is at least as good a predictor of sequence similarity as the other measures. We further show that term overlap may avoid some problems that affect the probability-based measures. Term overlap is also much faster to compute than the information content-based measures. CONCLUSION: Our experiments suggest that term overlap can serve as a simple and fast alternative to other approaches which use explicit information content estimation or require complex pre-calculations, while also avoiding problems that some other measures may encounter.
Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Armazenamento e Recuperação da Informação/métodos , Animais , Genes , Camundongos , Processamento de Linguagem Natural , Semântica , Vocabulário ControladoRESUMO
The epigenetic landscape is dynamically remodeled during neurogenesis. However, it is not understood how chromatin modifications in neural stem cells instruct the formation of complex structures in the brain. We report that the histone methyltransferase PRDM16 is required in radial glia to regulate lineage-autonomous and stage-specific gene expression programs that control number and position of upper layer cortical projection neurons. PRDM16 regulates the epigenetic state of transcriptional enhancers to activate genes involved in intermediate progenitor cell production and repress genes involved in cell migration. The histone methyltransferase domain of PRDM16 is necessary in radial glia to promote cortical neuron migration through transcriptional silencing. We show that repression of the gene encoding the E3 ubiquitin ligase PDZRN3 by PRDM16 determines the position of upper layer neurons. These findings provide insights into how epigenetic control of transcriptional enhancers in radial glial determines the organization of the mammalian cerebral cortex.
Assuntos
Movimento Celular/genética , Córtex Cerebral/embriologia , Proteínas de Ligação a DNA/genética , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais , Neurônios , Fatores de Transcrição/genética , Animais , Córtex Cerebral/citologia , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Camundongos , Neurogênese , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genéticaRESUMO
ErmineJ is software for the analysis of functionally interesting patterns in large gene lists drawn from gene expression profiling data or other high-throughput genomics studies. It can be used by biologists with no bioinformatics background to conduct sophisticated analyses of gene sets with multiple methods. It allows users to assess whether microarray data or other gene lists are enriched for a particular pathway or gene class. This protocol provides steps on how to format data files, determine analysis type, create custom gene sets and perform specific analyses-including overrepresentation analysis, genes score resampling and correlation resampling. ErmineJ differs from other methods in providing a rapid, simple and customizable analysis, including high-level visualization through its graphical user interface and scripting tools through its command-line interface, as well as custom gene sets and a variety of statistical methods. The protocol should take approximately 1 h, including (one-time) installation and setup.