Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975946

RESUMO

Compaction of bulky DNA is a universal issue for all DNA-based life forms. Chloroplast nucleoids (chloroplast DNA-protein complexes) are critical for chloroplast DNA maintenance and transcription, thereby supporting photosynthesis, but their detailed structure remains enigmatic. Our proteomic analysis of chloroplast nucleoids of the green alga Chlamydomonas reinhardtii identified a protein (HBD1) with a tandem repeat of two DNA-binding high mobility group box (HMG-box) domains, which is structurally similar to major mitochondrial nucleoid proteins transcription factor A, mitochondrial (TFAM), and ARS binding factor 2 protein (Abf2p). Disruption of the HBD1 gene by CRISPR-Cas9-mediated genome editing resulted in the scattering of chloroplast nucleoids. This phenotype was complemented when intact HBD1 was reintroduced, whereas a truncated HBD1 with a single HMG-box domain failed to complement the phenotype. Furthermore, ectopic expression of HBD1 in the mitochondria of yeast Δabf2 mutant successfully complemented the defects, suggesting functional similarity between HBD1 and Abf2p. Furthermore, in vitro assays of HBD1, including the electrophoretic mobility shift assay and DNA origami/atomic force microscopy, showed that HBD1 is capable of introducing U-turns and cross-strand bridges, indicating that proteins with two HMG-box domains would function as DNA clips to compact DNA in both chloroplast and mitochondrial nucleoids.


Assuntos
Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , DNA de Cloroplastos/genética , Genoma de Cloroplastos/genética , Domínios HMG-Box/genética , Sequências de Repetição em Tandem/genética , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/classificação , Proteínas de Cloroplastos/metabolismo , DNA de Cloroplastos/metabolismo , Regulação da Expressão Gênica , Espectrometria de Massas/métodos , Mutação , Filogenia , Ligação Proteica , Proteômica/métodos
2.
Proc Natl Acad Sci U S A ; 114(50): 13284-13289, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180407

RESUMO

Mitochondria, which evolved from a free-living bacterial ancestor, contain their own genomes and genetic systems and are produced from preexisting mitochondria by binary division. The mitochondrion-dividing (MD) ring is the main skeletal structure of the mitochondrial division machinery. However, the assembly mechanism and molecular identity of the MD ring are unknown. Multi-omics analysis of isolated mitochondrial division machinery from the unicellular alga Cyanidioschyzon merolae revealed an uncharacterized glycosyltransferase, MITOCHONDRION-DIVIDING RING1 (MDR1), which is specifically expressed during mitochondrial division and forms a single ring at the mitochondrial division site. Nanoscale imaging using immunoelectron microscopy and componential analysis demonstrated that MDR1 is involved in MD ring formation and that the MD ring filaments are composed of glycosylated MDR1 and polymeric glucose nanofilaments. Down-regulation of MDR1 strongly interrupted mitochondrial division and obstructed MD ring assembly. Taken together, our results suggest that MDR1 mediates the synthesis of polyglucan nanofilaments that assemble to form the MD ring. Given that a homolog of MDR1 performs similar functions in chloroplast division, the establishment of MDR1 family proteins appears to have been a singular, crucial event for the emergence of endosymbiotic organelles.


Assuntos
Glicosiltransferases/metabolismo , Biogênese de Organelas , Proteínas de Plantas/metabolismo , Rodófitas/metabolismo , Glucanos/metabolismo , Glicosiltransferases/genética , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Proteínas de Plantas/genética , Rodófitas/ultraestrutura
3.
Phycologia ; 56(4): 469-475, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375162

RESUMO

Pleodorina sphaerica Iyengar was considered to be a phylogenetic link between Volvox and the type species Pleodorina californica Shaw because it has small somatic cells distributed from the anterior to posterior poles in 64- or 128-celled vegetative colonies. However, cultural studies and molecular and ultrastructural data are lacking in P. sphaerica, and this species has not been recorded since 1951. Here, we performed light and electron microscopy and molecular phylogeny of P. sphaerica based on newly established culture strains originating from Thailand. Morphological features of the present Thai species agreed well with those of the previous studies of the Indian material of P. sphaerica and with those of the current concept of the advanced members of the Volvocaceae. The present P. sphaerica strains exhibited homothallic sexuality; male and facultative female colonies developed within a single clonal culture. Chloroplast multigene phylogeny demonstrated that P. sphaerica was sister to two other species of Pleodorina (P. californica and Pleodorina japonica Nozaki) without posterior somatic cells, and these three species of Pleodorina formed a robust clade, which was positioned distally in the large monophyletic group including nine taxa of Volvox sect. Merrillosphaera and Volvox (sect. Janetosphaera) aureus Ehrenberg. Based on the present phylogenetic results, evolutionary losses of posterior somatic cells might have occurred in the ancestor of P. californica and P. japonica. Thus, P. sphaerica might represent an ancestral morphology of Pleodorina, rather than of Volvox.

4.
Microbiology (Reading) ; 162(5): 803-812, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26925574

RESUMO

Triacylglycerol (TAG) produced by microalgae is a potential source of biofuel. Although various metabolic pathways in TAG synthesis have been identified in land plants, the pathway of TAG synthesis in microalgae remains to be clarified. The unicellular rhodophyte Cyanidioschyzon merolae has unique properties as a producer of biofuel because of easy culture and feasibility of genetic engineering. Additionally, it is useful in the investigation of the pathway of TAG synthesis, because all of the nuclear, mitochondrial and plastid genomes have been completely sequenced. We found that this alga accumulated TAG under nitrogen deprivation. Curiously, the amount and composition of plastid membrane lipids did not change significantly, whereas the amount of endoplasmic reticulum (ER) lipids increased with considerable changes in fatty acid composition. The nitrogen deprivation did not decrease photosynthetic oxygen evolution per chlorophyll significantly, while phycobilisomes were degraded preferentially. These results suggest that the synthesis of fatty acids is maintained in the plastid, which is used for the synthesis of TAG in the ER. The accumulated TAG contained mainly 18 : 2(9,12) at the C-2 position, which could be derived from phosphatidylcholine, which also contains this acid at the C-2 position.


Assuntos
Nitrogênio/deficiência , Rodófitas/crescimento & desenvolvimento , Rodófitas/metabolismo , Triglicerídeos/metabolismo , Biocombustíveis , Retículo Endoplasmático/metabolismo , Ácidos Graxos/biossíntese , Lipídeos de Membrana/análise , Fosfatidilcolinas/química , Ficobilissomas/metabolismo , Rodófitas/ultraestrutura
5.
Proc Natl Acad Sci U S A ; 110(23): 9583-8, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23696667

RESUMO

Peroxisomes (microbodies) are ubiquitous single-membrane-bounded organelles and fulfill essential roles in the cellular metabolism. They are found in virtually all eukaryotic cells and basically multiply by division. However, the mechanochemical machinery involved in peroxisome division remains elusive. Here, we first identified the peroxisome-dividing (POD) machinery. We isolated the POD machinery from Cyanidioschyzon merolae, a unicellular red alga containing a single peroxisome. Peroxisomal division in C. merolae can be highly synchronized by light/dark cycles and the microtubule-disrupting agent oryzalin. By proteomic analysis based on the complete genome sequence of C. merolae, we identified a dynamin-related protein 3 (DRP3) ortholog, CmDnm1 (Dnm1), that predominantly accumulated with catalase in the dividing-peroxisome fraction. Immunofluorescence microscopy demonstrated that Dnm1 formed a ring at the division site of the peroxisome. The outlines of the isolated dynamin rings were dimly observed by phase-contrast microscopy and clearly stained for Dnm1. Electron microscopy revealed that the POD machinery was formed at the cytoplasmic side of the equator. Immunoelectron microscopy showed that the POD machinery consisted of an outer dynamin-based ring and an inner filamentous ring. Down-regulation of Dnm1 impaired peroxisomal division. Surprisingly, the same Dnm1 serially controlled peroxisomal division after mitochondrial division. Because genetic deficiencies of Dnm1 orthologs in multiperoxisomal organisms inhibited both mitochondrial and peroxisomal proliferation, it is thought that peroxisomal division by contraction of a dynamin-based machinery is universal among eukaryotes. These findings are useful for understanding the fundamental systems in eukaryotic cells.


Assuntos
Dinamina I/metabolismo , Peroxissomos/fisiologia , Rodófitas/fisiologia , Catalase/metabolismo , Dinitrobenzenos , Regulação para Baixo , Dinamina I/genética , Immunoblotting , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Peroxissomos/ultraestrutura , Proteômica , Rodófitas/genética , Rodófitas/ultraestrutura , Sulfanilamidas
6.
J Cell Sci ; 126(Pt 11): 2392-400, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23549784

RESUMO

The cell cycle usually refers to the mitotic cycle, but the cell-division cycle in the plant kingdom consists of not only nuclear but also mitochondrial and chloroplast division cycle. However, an integrated control system that initiates division of the three organelles has not been found. We report that a novel C-terminal kinesin-like protein, three-organelle division-inducing protein (TOP), controls nuclear, mitochondrial and chloroplast divisions in the red alga Cyanidioschyzon merolae. A proteomics study revealed that TOP is a member of a complex of mitochondrial-dividing (MD) and plastid-dividing (PD) machineries (MD/PD machinery complex) just prior to constriction. After TOP localizes at the MD/PD machinery complex, mitochondrial and chloroplast divisions occur and the components of the MD/PD machinery complexes are phosphorylated. Furthermore, we found that TOP downregulation impaired both mitochondrial and chloroplast divisions. MD/PD machinery complexes were formed normally at each division site but they were neither phosphorylated nor constricted in these cells. Immunofluorescence signals of Aurora kinase (AUR) were localized around the MD machinery before constriction, whereas AUR was dispersed in the cytosol by TOP downregulation, suggesting that AUR is required for the constriction. Taken together our results suggest that TOP induces phosphorylation of MD/PD machinery components to accomplish mitochondrial and chloroplast divisions prior to nuclear division, by relocalization of AUR. In addition, given the presence of TOP homologs throughout the eukaryotes, and the involvement of TOP in mitochondrial and chloroplast division may illuminate the original function of C-terminal kinesin-like proteins.


Assuntos
Divisão do Núcleo Celular/fisiologia , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Cinesinas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Rodófitas/metabolismo , Aurora Quinases , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Cinesinas/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Rodófitas/genética
7.
Genes Genet Syst ; 98(6): 353-360, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38267054

RESUMO

We report the complete organellar genome sequences of an ultrasmall green alga, Medakamo hakoo strain M-hakoo 311, which has the smallest known nuclear genome in freshwater green algae. Medakamo hakoo has 90.8-kb chloroplast and 36.5-kb mitochondrial genomes containing 80 and 33 putative protein-coding genes, respectively. The mitochondrial genome is the smallest in the Trebouxiophyceae algae studied so far. The GC content of the nuclear genome is 73%, but those of chloroplast and mitochondrial genomes are 41% and 35%, respectively. Codon usages in the organellar genomes have a different tendency from that in the nuclear genome. The organellar genomes have unique characteristics, such as the biased encoding of mitochondrial genes on a single strand and the absence of operon structures in chloroplast ribosomal genes. Medakamo hakoo will be helpful for understanding the evolution of the organellar genome and the regulation of gene expression in chloroplasts and mitochondria.


Assuntos
Clorófitas , Genoma Mitocondrial , Microalgas , DNA de Cloroplastos/genética , Mitocôndrias/genética , Cloroplastos/genética , Clorófitas/genética , Água Doce , Filogenia , DNA Mitocondrial/genética
8.
Plant Cell ; 22(3): 772-81, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20348431

RESUMO

Vacuoles/lysosomes function in endocytosis and in storage and digestion of metabolites. These organelles are inherited by the daughter cells in eukaryotes. However, the mechanisms of this inheritance are poorly understood because the cells contain multiple vacuoles that behave randomly. The primitive red alga Cyanidioschyzon merolae has a minimum set of organelles. Here, we show that C. merolae contains about four vacuoles that are distributed equally between the daughter cells by binding to dividing mitochondria. Binding is mediated by VIG1, a 30-kD coiled-coil protein identified by microarray analyses and immunological assays. VIG1 appears on the surface of free vacuoles in the cytosol and then tethers the vacuoles to the mitochondria. The vacuoles are released from the mitochondrion in the daughter cells following VIG1 digestion. Suppression of VIG1 by antisense RNA disrupted the migration of vacuoles. Thus, VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance in C. merolae.


Assuntos
Proteínas de Algas/metabolismo , Mitocôndrias/metabolismo , Rodófitas/genética , Vacúolos/metabolismo , Proteínas de Algas/genética , Ciclo Celular , Perfilação da Expressão Gênica , Microscopia Eletrônica de Transmissão , Rodófitas/metabolismo , Análise de Sequência de Proteína , Vacúolos/ultraestrutura
9.
Commun Biol ; 6(1): 89, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690657

RESUMO

Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.


Assuntos
Clorófitas , Genoma , Filogenia , Clorófitas/genética , Genômica , Água Doce
10.
Plant J ; 60(5): 882-93, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19709388

RESUMO

Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate-rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF-MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density-gradient ultracentrifugation. The vacuole-containing fraction was subjected to SDS-PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non-lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o-methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin-tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.


Assuntos
Proteínas de Algas/metabolismo , Rodófitas/metabolismo , Vacúolos/metabolismo , Proteínas de Algas/análise , Proteínas de Algas/química , Eletroforese em Gel de Poliacrilamida , Genoma , Polifosfatos/metabolismo , Proteoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vacúolos/química , Vacúolos/ultraestrutura
11.
Nature ; 428(6983): 653-7, 2004 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15071595

RESUMO

Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.


Assuntos
Genoma , Rodófitas/genética , Actinas/genética , Proteínas de Algas/classificação , Proteínas de Algas/genética , Núcleo Celular/genética , Cromossomos/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , Evolução Molecular , Genômica , Íntrons/genética , Dados de Sequência Molecular , Plastídeos/genética , Plastídeos/fisiologia , Rodófitas/citologia , Análise de Sequência de DNA
12.
Protoplasma ; 257(4): 1069-1078, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32185527

RESUMO

Primary plastids originated from a free-living cyanobacterial ancestor and possess their own genomes-probably a few DNA copies. These genomes, which are organized in centrally located plastid nuclei (CN-type pt-nuclei), are produced from preexisting plastids by binary division. Ancestral algae with a CN-type pt-nucleus diverged and evolved into two basal eukaryotic lineages: red algae with circular (CL-type) pt-nuclei and green algae with scattered small (SN-type) pt-nuclei. Although the molecular dynamics of pt-nuclei in green algae and plants are now being analyzed, the process of the conversion of the original algae with a CN-type pt-nucleus to red algae with a CL-type one has not been studied. Here, we show that the CN-type pt-nucleus in the primitive red alga Cyanidioschyzon merolae can be changed to the CL-type by application of drying to produce slight cell swelling. This result implies that CN-type pt-nuclei are produced by compact packing of CL-type ones, which suggests that a C. merolae-like alga was the original progenitor of the red algal lineage. We also observed that the CL-type pt-nucleus has a chain-linked bead-like structure. Each bead is most likely a small unit of DNA, similar to CL-type pt-nuclei in brown algae. Our results thus suggest a C. merolae-like alga as the candidate for the secondary endosymbiont of brown algae.


Assuntos
Núcleo Celular/genética , Plastídeos/genética , Rodófitas/genética , Evolução Biológica
13.
Front Cell Dev Biol ; 8: 169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32346536

RESUMO

In many eukaryotes, cytokinesis proceeds in two successive steps: first, ingression of the cleavage furrow and second, abscission of the intercellular bridge. In animal cells, the actomyosin contractile ring is involved in the first step, while the endosomal sorting complex required for transport (ESCRT), which participates in various membrane fusion/fission events, mediates the second step. Intriguingly, in archaea, ESCRT is involved in cytokinesis, raising the hypothesis that the function of ESCRT in eukaryotic cytokinesis descended from the archaeal ancestor. In eukaryotes other than in animals, the roles of ESCRT in cytokinesis are poorly understood. To explore the primordial core mechanisms for eukaryotic cytokinesis, we investigated ESCRT functions in the unicellular red alga Cyanidioschyzon merolae that diverged early in eukaryotic evolution. C. merolae provides an excellent experimental system. The cell has a simple organelle composition. The genome (16.5 Mb, 5335 genes) has been completely sequenced, transformation methods are established, and the cell cycle is synchronized by a light and dark cycle. Similar to animal and fungal cells, C. merolae cells divide by furrowing at the division site followed by abscission of the intercellular bridge. However, they lack an actomyosin contractile ring. The proteins that comprise ESCRT-I-IV, the four subcomplexes of ESCRT, are partially conserved in C. merolae. Immunofluorescence of native or tagged proteins localized the homologs of the five ESCRT-III components [charged multivesicular body protein (CHMP) 1, 2, and 4-6], apoptosis-linked gene-2-interacting protein X (ALIX), the ESCRT-III adapter, and the main ESCRT-IV player vacuolar protein sorting (VPS) 4, to the intercellular bridge. In addition, ALIX was enriched around the cleavage furrow early in cytokinesis. When the ESCRT function was perturbed by expressing dominant-negative VPS4, cells with an elongated intercellular bridge accumulated-a phenotype resulting from abscission failure. Our results show that ESCRT mediates cytokinetic abscission in C. merolae. The fact that ESCRT plays a role in cytokinesis in archaea, animals, and early diverged alga C. merolae supports the hypothesis that the function of ESCRT in cytokinesis descended from archaea to a common ancestor of eukaryotes.

14.
Plant Cell Rep ; 28(12): 1881-93, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19859717

RESUMO

The ability of the primitive red alga Cyanidioschyzon merolae to adapt to high temperatures was utilized to produce thermotolerant transgenic plants. C. merolae inhabits an extreme environment (42 degrees C, pH 2.5) and the nuclear, mitochondrial, and plastid genomes have been sequenced. We analyzed expressed sequence tag (EST) data to reveal mechanisms of tolerance to high temperatures. The stromal ascorbate peroxidase (CmstAPX) that scavenges reactive oxygen species (ROS) was expressed at high levels (4th of 4,479 entries), thus, it offers clues to understanding high-temperature tolerance. CmstAPX has a chloroplast transit peptide (cTP) and a peroxidase domain. The peroxidase domain of CmstAPX has deletions and insertions when compared with that of Arabidopsis thaliana stromal APX (AtstAPX). To clarify aspects of tolerance to oxidative and high-temperature stress, we produced transgenic A. thaliana plants overexpressing CmstAPX and AtstAPX. CmstAPX plants showed higher activities of soluble APX than those of wild-type and AtstAPX plants. Fluorescence signals of a GFP fusion protein, immuno-fluorescence, and immunogold electron microscopy showed that CmstAPX was localized in the stroma of chloroplasts. Compared with wild-type plants and AtstAPX plants, CmstAPX plants were more tolerant to oxidative stress induced by methylviologen (MV, 0.4 muM) and high-temperature stress (33 degrees C). CmstAPX plants retained the highest chlorophyll content when treated with MV and high temperature, and their stroma and chloroplasts remained intact in their chloroplasts, whereas they disintegrated in wild-type plants. Our results suggest that the increased activity of APX in the chloroplasts of CmstAPX plants increased thermotolerance by increasing ROS-scavenging capacity at high temperatures.


Assuntos
Adaptação Fisiológica , Arabidopsis/genética , Peroxidases/metabolismo , Rodófitas/enzimologia , Temperatura , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/ultraestrutura , Ascorbato Peroxidases , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Etiquetas de Sequências Expressas , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/metabolismo , Isoenzimas/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Peroxidases/química , Peroxidases/genética , Peroxidases/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
15.
BMC Biol ; 5: 28, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17623057

RESUMO

BACKGROUND: All previously reported eukaryotic nuclear genome sequences have been incomplete, especially in highly repeated units and chromosomal ends. Because repetitive DNA is important for many aspects of biology, complete chromosomal structures are fundamental for understanding eukaryotic cells. Our earlier, nearly complete genome sequence of the hot-spring red alga Cyanidioschyzon merolae revealed several unique features, including just three ribosomal DNA copies, very few introns, and a small total number of genes. However, because the exact structures of certain functionally important repeated elements remained ambiguous, that sequence was not complete. Obviously, those ambiguities needed to be resolved before the unique features of the C. merolae genome could be summarized, and the ambiguities could only be resolved by completing the sequence. Therefore, we aimed to complete all previous gaps and sequence all remaining chromosomal ends, and now report the first nuclear-genome sequence for any eukaryote that is 100% complete. RESULTS: Our present complete sequence consists of 16546747 nucleotides covering 100% of the 20 linear chromosomes from telomere to telomere, representing the simple and unique chromosomal structures of the eukaryotic cell. We have unambiguously established that the C. merolae genome contains the smallest known histone-gene cluster, a unique telomeric repeat for all chromosomal ends, and an extremely low number of transposons. CONCLUSION: By virtue of these attributes and others that we had discovered previously, C. merolae appears to have the simplest nuclear genome of the non-symbiotic eukaryotes. These unusually simple genomic features in the 100% complete genome sequence of C. merolae are extremely useful for further studies of eukaryotic cells.


Assuntos
DNA de Algas/genética , Genoma , Fontes Termais/microbiologia , Rodófitas/genética , Sequência de Bases , Mapeamento Cromossômico , Elementos de DNA Transponíveis/genética , DNA de Algas/química , Células Eucarióticas/metabolismo , Genômica/métodos , Histonas/genética , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA , Telômero/genética
16.
Bot Stud ; 59(1): 10, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29616358

RESUMO

BACKGROUND: Volvox carteri f. nagariensis is a model taxon that has been studied extensively at the cellular and molecular level. The most distinctive morphological attribute of V. carteri f. nagariensis within V. carteri is the production of sexual male spheroids with only a 1:1 ratio of somatic cells to sperm packets or androgonidia (sperm packet initials). However, the morphology of male spheroids of V. carteri f. nagariensis has been examined only in Japanese strains. In addition, V. carteri f. nagariensis has heterothallic sexuality; male and female sexes are determined by the sex-determining chromosomal region or mating-type locus composed of a > 1 Mbp linear chromosome. Fifteen sex-specific genes and many sex-based divergent shared genes (gametologs) are present within this region. Thus far, such genes have not been identified in natural populations of this species. RESULTS: During a recent fieldwork in Taiwan, we encountered natural populations of V. carteri that had not previously been recorded from Taiwan. In total, 33 strains of this species were established from water samples collected in Northern Taiwan. Based on sequences of the internal transcribed spacer 2 region of nuclear ribosomal DNA and the presence of asexual spheroids with up to 16 gonidia, the species was clearly identified as V. carteri f. nagariensis. However, the sexual male spheroids of the Taiwanese strains generally exhibited a 1:1 to > 50:1 ratio of somatic cells to androgonidia. We also investigated the presence or absence of several sex-specific genes and the sex-based divergent genes MAT3m, MAT3f and LEU1Sm. We did not identify recombination or deletion of such genes between the male and female mating-type locus haplotypes in 32 of the 33 strains. In one putative female strain, the female-specific gene HMG1f was not amplified by genomic polymerase chain reaction. When sexually induced, apparently normal female sexual spheroids developed in this strain. CONCLUSIONS: Male spheroids are actually variable within V. carteri f. nagariensis. Therefore, the minimum ratio of somatic cells to androgonidia in male spheroids and the maximum number of gonidia in asexual spheroids may be diagnostic for V. carteri f. nagariensis. HMG1f may not be directly related to the formation of female spheroids in this taxon.

17.
Biochim Biophys Acta ; 1763(5-6): 510-21, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16690143

RESUMO

Mitochondria are derived from free-living alpha-proteobacteria that were engulfed by eukaryotic host cells through the process of endosymbiosis, and therefore have their own DNA which is organized using basic proteins to form organelle nuclei (nucleoids). Mitochondria divide and are split amongst the daughter cells during cell proliferation. Their division can be separated into two main events: division of the mitochondrial nuclei and division of the matrix (the so-called mitochondrial division, or mitochondriokinesis). In this review, we first focus on the cytogenetical relationships between mitochondrial nuclear division and mitochondriokinesis. Mitochondriokinesis occurs after mitochondrial nuclear division, similar to bacterial cytokinesis. We then describe the fine structure and dynamics of the mitochondrial division ring (MD ring) as a basic morphological background for mitochondriokinesis. Electron microscopy studies first identified a small electron-dense MD ring in the cytoplasm at the constriction sites of dividing mitochondria in the slime mold Physarum polycephalum, and then two large MD rings (with outer cytoplasmic and inner matrix sides) in the red alga Cyanidioschyzon merolae. Now MD rings have been found in all eukaryotes. In the third section, we describe the relationships between the MD ring and the FtsZ ring descended from ancestral bacteria. Other than the GTPase, FtsZ, mitochondria have lost most of the proteins required for bacterial cytokinesis as a consequence of endosymbiosis. The FtsZ protein forms an electron transparent ring (FtsZ or Z ring) in the matrix inside the inner MD ring. For the fourth section, we describe the dynamic association between the outer MD ring with a ring composed of the eukaryote-specific GTPase dynamin. Recent studies have revealed that eukaryote-specific GTPase dynamins form an electron transparent ring between the outer membrane and the MD ring. Thus, mitochondriokinesis is thought to be controlled by a mitochondrial division (MD) apparatus including a dynamic trio, namely the FtsZ, MD and dynamin rings, which consist of a chimera of rings from bacteria and eukaryotes in primitive organisms. Since the genes for the MD ring and dynamin rings are not found in the prokaryotic genome, the host genomes may make these rings to actively control mitochondrial division. In the fifth part, we focus on the dynamic changes in the formation and disassembly of the FtsZ, MD and dynamin rings. FtsZ rings are digested during a later period of mitochondrial division and then finally the MD and dynamin ring apparatuses pinched off the daughter mitochondria, supporting the idea that the host genomes are responsible for the ultimate control of mitochondrial division. We discuss the evolution, from the original vesicle division (VD) apparatuses to VD apparatuses including classical dynamin rings and MD apparatuses. It is likely that the MD apparatuses involving the dynamic trio evolved into the plastid division (PD) apparatus in Bikonta, while in Opisthokonta, the MD apparatus was simplified during evolution and may have branched into the mitochondrial fusion apparatus. Finally, we describe the possibility of intact isolation of large MD/PD apparatuses, the identification of all their proteins and their related genes using C. merolae genome information and TOF-MS analyses. These results will assist in elucidating the universal mechanism and evolution of MD, PD and VD apparatuses.


Assuntos
Evolução Biológica , Mitocôndrias/fisiologia , Animais , Dinaminas/metabolismo , Endocitose , Mitocôndrias/ultraestrutura , Plastídeos/metabolismo
18.
Science ; 356(6338): 631-634, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28495749

RESUMO

Holliday junctions, four-stranded DNA structures formed during homologous recombination, are disentangled by resolvases that have been found in prokaryotes and eukaryotes but not in plant organelles. Here, we identify monokaryotic chloroplast 1 (MOC1) as a Holliday junction resolvase in chloroplasts by analyzing a green alga Chlamydomonas reinhardtii mutant defective in chloroplast nucleoid (DNA-protein complex) segregation. MOC1 is structurally similar to a bacterial Holliday junction resolvase, resistance to ultraviolet (Ruv) C, and genetically conserved among green plants. Reduced or no expression of MOC1 in Arabidopsis thaliana leads to growth defects and aberrant chloroplast nucleoid segregation. In vitro biochemical analysis and high-speed atomic force microscopic analysis revealed that A. thaliana MOC 1 (AtMOC1) binds and cleaves the core of Holliday junctions symmetrically. MOC1 may mediate chloroplast nucleoid segregation in green plants by resolving Holliday junctions.


Assuntos
Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Resolvases de Junção Holliday/metabolismo , Arabidopsis , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , DNA de Cloroplastos , DNA Cruciforme
19.
J Gen Appl Microbiol ; 62(3): 111-7, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27181396

RESUMO

Most microalgae accumulate neutral lipids, including triacylglycerol (TAG), into spherical structures called lipid bodies (LBs) under environmental stress conditions such as nutrient depletion. In green algae, starch accumulation precedes TAG accumulation, and the starch is thought to be a substrate for TAG synthesis. However, the relationship between TAG synthesis and the starch content in red algae, as well as how TAG accumulation is regulated, is unclear. In this study, we cultured the primitive red alga Cyanidioschyzon merolae under nitrogen-depleted conditions, and monitored the formation of starch granules (SGs) and LBs using microscopy. SGs stained with potassium iodide were observed at 24 h; however, LBs stained specifically with BODIPY 493/503 were observed after 48 h. Quantitative analysis of neutral sugar and cytomorphological semi-quantitative analysis of TAG accumulation also supported these results. Thus, the accumulation of starch occurred and preceded the accumulation of TAG in cells of C. merolae. However, TAG accumulation was not accompanied by a decrease in the starch content, suggesting that the starch is a major carbon storage sink, at least under nitrogen-depleted conditions. Quantitative real-time PCR revealed that the mRNA levels of genes involved in starch and TAG synthesis rarely changed during the culture period, suggesting that starch and TAG synthesis in C. merolae are not controlled through gene transcription but at other stages, such as translation and/or enzymatic activity.


Assuntos
Glucanos/biossíntese , Nitrogênio/metabolismo , Rodófitas/metabolismo , Amido/metabolismo , Triglicerídeos/metabolismo , Genes de Plantas , Glucanos/química , Gotículas Lipídicas/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Rodófitas/genética , Rodófitas/crescimento & desenvolvimento , Rodófitas/ultraestrutura
20.
Eur J Cell Biol ; 82(6): 323-32, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12868600

RESUMO

Plastids, an essential group of plant cellular organelles, proliferate by division to maintain continuity through cell lineages in plants. In recent years, it was revealed that the bacterial cell division protein FtsZ is encoded in the nuclear genome of plant cells, and plays a major role in the plastid division process forming a ring along the center of plastids. Although the best-characterized type of plastid division so far is the division with a single FtsZ ring at the plastid midpoint, it was recently reported that in some plant organs and tissues, plastids are pleomorphic and form multiple FtsZ rings. However, the pleomorphic plastid division mechanism, such as the formation of multiple FtsZ rings, the constriction of plastids and the behavior of plastid (pt) nucleoids, remains totally unclear. To elucidate these points, we used the cultured cell line, tobacco (Nicotiana tabacum L.) Bright Yellow-2, in which plastids are pleomorphic and show dynamic morphological changes during culture. As a result, it was revealed that as the plastid elongates from an ellipsoid shape to a string shape after medium renewal, FtsZ rings are multiplied almost orderly and perpendicularly to the long axis of plastids. Active DNA synthesis of pt nucleoids is induced by medium transfer, and the division and the distribution of pt nucleoids occur along with plastid elongation. Although it was thought that the plastid divides with simultaneous multiple constrictions at all the FtsZ ring sites, giving rise to many small plastids, we found that the plastids generally divide constricting at only one FtsZ ring site. Moreover, using electron microscopy, we revealed that plastid-dividing (PD) rings are observed only at the constriction site, and not at swollen regions. These results indicate that in the pleomorphic plastid division with multiple FtsZ rings, the formation of PD rings occurs at a limited FtsZ ring site for one division. Multiplied FtsZ rings seem to localize in advance at the expected sites of division, and the formation of a PD ring at each FtsZ ring site occurs in a certain order, not simultaneously. Based on these results, a novel model for the pleomorphic plastid division with multiple FtsZ rings is proposed.


Assuntos
Proteínas de Plantas/fisiologia , Plastídeos/fisiologia , Proteínas de Arabidopsis , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , DNA de Plantas/biossíntese , DNA de Plantas/efeitos dos fármacos , Microscopia Eletrônica , Plastídeos/ultraestrutura , Isoformas de Proteínas/fisiologia , Nicotiana/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA