Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 87(3): 245-57, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27147230

RESUMO

We previously reported l-α-aminooxy-phenylpropionic acid (AOPP) to be an inhibitor of auxin biosynthesis, but its precise molecular target was not identified. In this study we found that AOPP targets TRYPTOPHAN AMINOTRANSFERASE of ARABIDOPSIS 1 (TAA1). We then synthesized 14 novel compounds derived from AOPP to study the structure-activity relationships of TAA1 inhibitors in vitro. The aminooxy and carboxy groups of the compounds were essential for inhibition of TAA1 in vitro. Docking simulation analysis revealed that the inhibitory activity of the compounds was correlated with their binding energy with TAA1. These active compounds reduced the endogenous indole-3-acetic acid (IAA) content upon application to Arabidopsis seedlings. Among the compounds, we selected 2-(aminooxy)-3-(naphthalen-2-yl)propanoic acid (KOK1169/AONP) and analyzed its activities in vitro and in vivo. Arabidopsis seedlings treated with KOK1169 showed typical auxin-deficient phenotypes, which were reversed by exogenous IAA. In vitro and in vivo experiments indicated that KOK1169 is more specific for TAA1 than other enzymes, such as phenylalanine ammonia-lyase. We further tested 41 novel compounds with aminooxy and carboxy groups to which we added protection groups to increase their calculated hydrophobicity. Most of these compounds decreased the endogenous auxin level to a greater degree than the original compounds, and resulted in a maximum reduction of about 90% in the endogenous IAA level in Arabidopsis seedlings. We conclude that the newly developed compounds constitute a class of inhibitors of TAA1. We designated them 'pyruvamine'.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Plântula/metabolismo , Triptofano Transaminase/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Inibidores Enzimáticos/farmacologia , Plântula/efeitos dos fármacos , Relação Estrutura-Atividade , Triptofano Transaminase/antagonistas & inibidores
2.
Plant Cell Rep ; 34(8): 1343-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25903543

RESUMO

KEY MESSAGE: The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Oxigenases/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Genes de Plantas/fisiologia , Ácidos Indolacéticos/análise , Indóis/metabolismo , Indóis/farmacologia , Ácidos Naftalenoacéticos/farmacologia , Oxigenases/genética , Reguladores de Crescimento de Plantas/análise , Plântula/fisiologia
3.
Cells ; 11(9)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563726

RESUMO

Parthenocarpy, the pollination-independent fruit set, can raise the productivity of the fruit set even under adverse factors during the reproductive phase. The application of plant hormones stimulates parthenocarpy, but artificial hormones incur extra financial and labour costs to farmers and can induce the formation of deformed fruit. This study examines the performance of parthenocarpic mutants having no transcription factors of SlIAA9 and SlTAP3 and sldella that do not have the protein-coding gene, SlDELLA, in tomato (cv. Micro-Tom). At 0 day after the flowering (DAF) stage and DAFs after pollination, the sliaa9 mutant demonstrated increased pistil development compared to the other two mutants and wild type (WT). In contrast to WT and the other mutants, the sliaa9 mutant with pollination efficiently stimulated the build-up of auxin and GAs after flowering. Alterations in both transcript and metabolite profiles existed for WT with and without pollination, while the three mutants without pollination demonstrated the comparable metabolomic status of pollinated WT. Network analysis showed key modules linked to photosynthesis, sugar metabolism and cell proliferation. Equivalent modules were noticed in the famous parthenocarpic cultivars 'Severianin', particularly for emasculated samples. Our discovery indicates that controlling the genes and metabolites proffers future breeding policies for tomatoes.


Assuntos
Solanum lycopersicum , Divisão Celular , Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA