Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(25): 14342-14353, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513716

RESUMO

Immature T cells undergo a process of positive selection in the thymus when their new T cell receptor (TCR) engages and signals in response to self-peptides. As the T cell matures, a slew of negative regulatory molecules, including the inhibitory surface glycoprotein CD5, are up-regulated in proportion to the strength of the self-peptide signal. Together these regulators dampen TCR-proximal signaling and help avoid any subsequent peripheral activation of T cells by self-peptides. Paradoxically, antigen-specific T cells initially expressing more CD5 (CD5hi) have been found to better persist as effector/memory cells after a peripheral challenge. The molecular mechanisms underlying such a duality in CD5 function is not clear. We found that CD5 alters the basal activity of the NF-κB signaling in resting peripheral T cells. When CD5 was conditionally ablated, T cells were unable to maintain higher expression of the cytoplasmic NF-κB inhibitor IκBα. Consistent with this, resting CD5hi T cells expressed more of the NF-κB p65 protein than CD5lo cells, without significant increases in transcript levels, in the absence of TCR signals. This posttranslationally stabilized cellular NF-κB depot potentially confers a survival advantage to CD5hi T cells over CD5lo ones. Taken together, these data suggest a two-step model whereby the strength of self-peptide-induced TCR signal lead to the up-regulation of CD5, which subsequently maintains a proportional reserve of NF-κB in peripheral T cells poised for responding to agonistic antigen-driven T cell activation.


Assuntos
Antígenos CD5/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Inibidor de NF-kappaB alfa/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Linfócitos T/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Antígenos CD5/genética , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular/imunologia , Feminino , Citometria de Fluxo , Lipopolissacarídeos/imunologia , Ativação Linfocitária , Camundongos , Camundongos Knockout , Modelos Animais , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Timo/citologia , Timo/crescimento & desenvolvimento , Timo/imunologia , Fator de Transcrição RelA/metabolismo , Regulação para Cima
2.
Blood ; 135(25): 2252-2265, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32181817

RESUMO

Prolonged or enhanced expression of the proto-oncogene Lmo2 is associated with a severe form of T-cell acute lymphoblastic leukemia (T-ALL), designated early T-cell precursor ALL, which is characterized by the aberrant self-renewal and subsequent oncogenic transformation of immature thymocytes. It has been suggested that Lmo2 exerts these effects by functioning as component of a multi-subunit transcription complex that includes the ubiquitous adapter Ldb1 along with b-HLH and/or GATA family transcription factors; however, direct experimental evidence for this mechanism is lacking. In this study, we investigated the importance of Ldb1 for Lmo2-induced T-ALL by conditional deletion of Ldb1 in thymocytes in an Lmo2 transgenic mouse model of T-ALL. Our results identify a critical requirement for Ldb1 in Lmo2-induced thymocyte self-renewal and thymocyte radiation resistance and for the transition of preleukemic thymocytes to overt T-ALL. Moreover, Ldb1 was also required for acquisition of the aberrant preleukemic ETP gene expression signature in immature Lmo2 transgenic thymocytes. Co-binding of Ldb1 and Lmo2 was detected at the promoters of key upregulated T-ALL driver genes (Hhex, Lyl1, and Nfe2) in preleukemic Lmo2 transgenic thymocytes, and binding of both Ldb1 and Lmo2 at these sites was reduced following Cre-mediated deletion of Ldb1. Together, these results identify a key role for Ldb1, a nonproto-oncogene, in T-ALL and support a model in which Lmo2-induced T-ALL results from failure to downregulate Ldb1/Lmo2-nucleated transcription complexes which normally function to enforce self-renewal in bone marrow hematopoietic progenitors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Autorrenovação Celular , Proteínas de Ligação a DNA/fisiologia , Proteínas com Domínio LIM/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Timócitos/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Transferência Adotiva , Animais , Antígenos CD/biossíntese , Transformação Celular Neoplásica , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Deleção de Genes , Técnicas de Introdução de Genes , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/genética , Linfopoese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proto-Oncogene Mas , RNA-Seq , Quimera por Radiação , Tolerância a Radiação , Timócitos/metabolismo , Timócitos/efeitos da radiação , Timócitos/transplante
3.
Hum Mol Genet ; 27(9): 1533-1544, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452352

RESUMO

Cardiac calsequestrin (Casq2) associates with the ryanodine receptor 2 channel in the junctional sarcoplasmic reticulum to regulate Ca2+ release into the cytoplasm. Patients carrying mutations in CASQ2 display low resting heart rates under basal conditions and stress-induced polymorphic ventricular tachycardia (CPVT). In this study, we generate and characterize novel conditional deletion and conditional rescue mouse models to test the influence of developmental programs on the heart rate and CPVT phenotypes. We also compare the requirements for Casq2 function in the cardiac conduction system (CCS) and in working cardiomyocytes. Our study shows that the CPVT phenotype is dependent upon concurrent loss of Casq2 function in both the CCS and in working cardiomyocytes. Accordingly, restoration of Casq2 in only the CCS prevents CPVT. In addition, occurrence of CPVT is independent of the developmental history of Casq2-deficiency. In contrast, resting heart rate depends upon Casq2 gene activity only in the CCS and upon developmental history. Finally, our data support a model where low basal heart rate is a significant risk factor for CPVT.


Assuntos
Calsequestrina/metabolismo , Taquicardia Ventricular/metabolismo , Tamoxifeno/farmacologia , Animais , Cálcio/metabolismo , Calsequestrina/genética , Feminino , Frequência Cardíaca/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Mutantes , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/genética
4.
Nucleic Acids Res ; 45(22): 12766-12779, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244185

RESUMO

Imprinted genes occur in discrete clusters that are coordinately regulated by shared DNA elements called Imprinting Control Regions. H19 and Igf2 are linked imprinted genes that play critical roles in development. Loss of imprinting (LOI) at the IGF2/H19 locus on the maternal chromosome is associated with the developmental disorder Beckwith Wiedemann Syndrome (BWS) and with several cancers. Here we use comprehensive genetic and genomic analyses to follow muscle development in a mouse model of BWS to dissect the separate and shared roles for misexpression of Igf2 and H19 in the disease phenotype. We show that LOI results in defects in muscle differentiation and hypertrophy and identify primary downstream targets: Igf2 overexpression results in over-activation of MAPK signaling while loss of H19 lncRNA prevents normal down regulation of p53 activity and therefore results in reduced AKT/mTOR signaling. Moreover, we demonstrate instances where H19 and Igf2 misexpression work separately, cooperatively, and antagonistically to establish the developmental phenotype. This study thus identifies new biochemical roles for the H19 lncRNA and underscores that LOI phenotypes are multigenic so that complex interactions will contribute to disease outcomes.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Mutação , RNA Longo não Codificante/genética , Animais , Síndrome de Beckwith-Wiedemann/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética
5.
PLoS Genet ; 12(7): e1006200, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27466807

RESUMO

Polycomb group response elements (PREs) in Drosophila are DNA-elements that recruit Polycomb proteins (PcG) to chromatin and regulate gene expression. PREs are easily recognizable in the Drosophila genome as strong peaks of PcG-protein binding over discrete DNA fragments; many small but statistically significant PcG peaks are also observed in PcG domains. Surprisingly, in vivo deletion of the four characterized strong PREs from the PcG regulated invected-engrailed (inv-en) gene complex did not disrupt the formation of the H3K27me3 domain and did not affect inv-en expression in embryos or larvae suggesting the presence of redundant PcG recruitment mechanism. Further, the 3D-structure of the inv-en domain was only minimally altered by the deletion of the strong PREs. A reporter construct containing a 7.5kb en fragment that contains three weak peaks but no large PcG peaks forms an H3K27me3 domain and is PcG-regulated. Our data suggests a model for the recruitment of PcG-complexes to Drosophila genes via interactions with multiple, weak PREs spread throughout an H3K27me3 domain.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/genética , Proteínas do Grupo Polycomb/genética , Elementos de Resposta/genética , Animais , Proteínas de Ligação a DNA/biossíntese , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Histona Desmetilases/genética , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Proteínas do Grupo Polycomb/biossíntese , Proteínas do Grupo Polycomb/química , Ligação Proteica/genética , Domínios Proteicos/genética
6.
Proc Natl Acad Sci U S A ; 113(14): 3826-31, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001825

RESUMO

Polycomb group (PcG) proteins are responsible for maintaining the silenced transcriptional state of many developmentally regulated genes. PcG proteins are organized into multiprotein complexes that are recruited to DNA via cis-acting elements known as "Polycomb response elements" (PREs). In Drosophila, PREs consist of binding sites for many different DNA-binding proteins, some known and others unknown. Identification of these DNA-binding proteins is crucial to understanding the mechanism of PcG recruitment to PREs. We report here the identification of Combgap (Cg), a sequence-specific DNA-binding protein that is involved in recruitment of PcG proteins. Cg can bind directly to PREs via GTGT motifs and colocalizes with the PcG proteins Pleiohomeotic (Pho) and Polyhomeotic (Ph) at the majority of PREs in the genome. In addition, Cg colocalizes with Ph at a number of targets independent of Pho. Loss of Cg leads to decreased recruitment of Ph at only a subset of sites; some of these sites are binding sites for other Polycomb repressive complex 1 (PRC1) components, others are not. Our data suggest that Cg can recruit Ph in the absence of PRC1 and illustrate the diversity and redundancy of PcG protein recruitment mechanisms.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , DNA/genética , Proteínas de Ligação a DNA/genética , Motivos de Nucleotídeos/genética , Proteínas do Grupo Polycomb/metabolismo
7.
BMC Genomics ; 16: 311, 2015 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-25896894

RESUMO

BACKGROUND: Marek's disease (MD) is a highly contagious, lymphomatous disease of chickens induced by a herpesvirus, Marek's disease virus (MDV) that is the cause of major annual losses to the poultry industry. MD pathogenesis involves multiple stages including an early cytolytic phase and latency, and transitions between these stages are governed by several host and environmental factors. The success of vaccination strategies has led to the increased virulence of MDV and selective breeding of naturally resistant chickens is seen as a viable alternative. While multiple gene expression studies have been performed in resistant and susceptible populations, little is known about the epigenetic effects of infection. RESULTS: In this study, we investigated temporal chromatin signatures induced by MDV by analyzing early cytolytic and latent phases of infection in the bursa of Fabricius of MD-resistant and -susceptible birds. Major global variations in chromatin marks were observed at different stages of MD in the two lines. Differential H3K27me3 marks were associated with immune-related pathways, such as MAP kinase signaling, focal adhesion and neuroactive ligand receptor interaction, and suggested varying degrees of silencing in response to infection. Immune-related microRNAs, e.g. gga-miR-155 and gga-miR-10b, bore chromatin signatures, which suggested their contribution to MD-susceptibility. Finally, several members of the focal adhesion pathway, e.g. THBS4 and ITGA1, showed marked concordance between gene expression and chromatin marks indicating putative epigenetic regulation in response to MDV infection. CONCLUSION: Our comprehensive analysis of chromatin signatures, therefore, revealed further clues about the epigenetic effects of MDV infection although further studies are necessary to elucidate the functional implications of the observed variations in histone modifications.


Assuntos
Histonas/metabolismo , Mardivirus/patogenicidade , Animais , Galinhas/metabolismo , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Resistência à Doença/genética , Epigênese Genética , Adesões Focais/metabolismo , Genoma , Sistema de Sinalização das MAP Quinases , Doença de Marek/patologia , Doença de Marek/virologia , Metilação , MicroRNAs/metabolismo , Análise de Sequência de DNA
8.
Genome Res ; 20(5): 693-703, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20212021

RESUMO

Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here, we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, three Bos indicus, and three composite breeds for beef, dairy, or dual purpose. We identified over 200 candidate CNV regions (CNVRs) in total and 177 within known chromosomes, which harbor or are adjacent to gains or losses. These 177 high-confidence CNVRs cover 28.1 megabases or approximately 1.07% of the genome. Over 50% of the CNVRs (89/177) were found in multiple animals or breeds and analysis revealed breed-specific frequency differences and reflected aspects of the known ancestry of these cattle breeds. Selected CNVs were further validated by independent methods using qPCR and FISH. Approximately 67% of the CNVRs (119/177) completely or partially span cattle genes and 61% of the CNVRs (108/177) directly overlap with segmental duplications. The CNVRs span about 400 annotated cattle genes that are significantly enriched for specific biological functions, such as immunity, lactation, reproduction, and rumination. Multiple gene families, including ULBP, have gone through ruminant lineage-specific gene amplification. We detected and confirmed marked differences in their CNV frequencies across diverse breeds, indicating that some cattle CNVs are likely to arise independently in breeds and contribute to breed differences. Our results provide a valuable resource beyond microsatellites and single nucleotide polymorphisms to explore the full dimension of genetic variability for future cattle genomic research.


Assuntos
Bovinos/classificação , Bovinos/genética , Variações do Número de Cópias de DNA , Dosagem de Genes , Animais , Cruzamento , Hibridização Genômica Comparativa , Genética Populacional , Genoma , Variação Estrutural do Genoma , Genômica , Hibridização in Situ Fluorescente , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase/métodos , Duplicações Segmentares Genômicas , Especificidade da Espécie
9.
Matrix Biol ; 121: 127-148, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348683

RESUMO

Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.


Assuntos
Osteogênese Imperfeita , Animais , Humanos , Camundongos , Adesão Celular , Colágeno/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Multiômica , Osteoblastos , Osteogênese/genética , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo
10.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37333290

RESUMO

The differentiation of osteoblasts and the subsequent formation of bone marks an important terminal phase in palate formation that leads to the separation of the oral and nasal cavities. While the developmental events that precede palatal osteogenesis are well explored, major gaps remain in our understanding of the molecular mechanisms that lead to the bony union of fusing palatal shelves. Herein, the timeline of osteogenic transcriptional programming is unveiled in the embryonic palate by way of integrated bulk, single-cell, and spatially resolved RNA-seq analyses. We define spatially restricted expression patterns of key marker genes, both regulatory and structural, that are differentially expressed during palatal fusion, including the identification of several novel genes ( Deup1, Dynlrb2, Lrrc23 ) spatially restricted in expression to the palate, providing a relevant framework for future studies that identify new candidate genes for cleft palate anomalies in humans as well as the timing of mammalian embryonic palatal osteogenesis.

11.
Nat Genet ; 55(2): 280-290, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36717694

RESUMO

How enhancers activate their distal target promoters remains incompletely understood. Here we dissect how CTCF-mediated loops facilitate and restrict such regulatory interactions. Using an allelic series of mouse mutants, we show that CTCF is neither required for the interaction of the Sox2 gene with distal enhancers, nor for its expression. Insertion of various combinations of CTCF motifs, between Sox2 and its distal enhancers, generated boundaries with varying degrees of insulation that directly correlated with reduced transcriptional output. However, in both epiblast and neural tissues, enhancer contacts and transcriptional induction could not be fully abolished, and insertions failed to disrupt implantation and neurogenesis. In contrast, Sox2 expression was undetectable in the anterior foregut of mutants carrying the strongest boundaries, and these animals fully phenocopied loss of SOX2 in this tissue. We propose that enhancer clusters with a high density of regulatory activity can better overcome physical barriers to maintain faithful gene expression and phenotypic robustness.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Camundongos , Animais , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo
12.
Nat Commun ; 14(1): 5687, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709732

RESUMO

The terminal differentiation of osteoblasts and subsequent formation of bone marks an important phase in palate development that leads to the separation of the oral and nasal cavities. While the morphogenetic events preceding palatal osteogenesis are well explored, major gaps remain in our understanding of the molecular mechanisms driving the formation of this bony union of the fusing palate. Through bulk, single-nucleus, and spatially resolved RNA-sequencing analyses of the developing secondary palate, we identify a shift in transcriptional programming between embryonic days 14.5 and 15.5 pinpointing the onset of osteogenesis. We define spatially restricted expression patterns of key osteogenic marker genes that are differentially expressed between these developmental timepoints. Finally, we identify genes in the palate highly expressed by palate nasal epithelial cells, also enriched within palatal osteogenic mesenchymal cells. This investigation provides a relevant framework to advance palate-specific diagnostic and therapeutic biomarker discovery.


Assuntos
Pesquisa Biomédica , Transcriptoma , Transcriptoma/genética , Osteogênese/genética , Perfilação da Expressão Gênica , Células Epiteliais
13.
BMC Genomics ; 13: 557, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23072359

RESUMO

BACKGROUND: Marek's disease (MD) is a neoplastic disease in chickens caused by the MD virus (MDV). Successful vaccine development against MD has resulted in increased virulence of MDV and the understanding of genetic resistance to the disease is, therefore, crucial to long-term control strategies. Also, epigenetic factors are believed to be one of the major determinants of disease response. RESULTS: Here, we carried out comprehensive analyses of the epigenetic landscape induced by MDV, utilizing genome-wide histone H3 lysine 4 and lysine 27 trimethylation maps from chicken lines with varying resistance to MD. Differential chromatin marks were observed on genes previously implicated in the disease such as MX1 and CTLA-4 and also on genes reported in other cancers including IGF2BP1 and GAL. We detected bivalent domains on immune-related transcriptional regulators BCL6, CITED2 and EGR1, which underwent dynamic changes in both lines as a result of MDV infection. In addition, putative roles for GAL in the mechanism of MD progression were revealed. CONCLUSION: Our results confirm the presence of widespread epigenetic differences induced by MD in chicken lines with different levels of genetic resistance. A majority of observed epigenetic changes were indicative of increased levels of viral infection in the susceptible line symptomatic of lowered immunocompetence in these birds caused by early cytolytic infection. The GAL system that has known anti-proliferative effects in other cancers is also revealed to be potentially involved in MD progression. Our study provides further insight into the mechanisms of MD progression while revealing a complex landscape of epigenetic regulatory mechanisms that varies depending on host factors.


Assuntos
Cromatina/metabolismo , Doença de Marek/virologia , Animais , Galinhas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Galanina/genética , Galanina/metabolismo , Genoma , Histonas/genética , Histonas/metabolismo , Mardivirus/patogenicidade , Doença de Marek/metabolismo , Doença de Marek/patologia , Metilação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptor Tipo 1 de Galanina/genética , Receptor Tipo 1 de Galanina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Comp Funct Genomics ; 2012: 756284, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22566754

RESUMO

Beef is one of the leading sources of protein, B vitamins, iron, and zinc in human food. Beef palatability is based on three general criteria: tenderness, juiciness, and flavor, of which tenderness is thought to be the most important factor. In this study, we found that beef tenderness, measured by the Warner-Bratzler shear force (WBSF), was dramatically increased by acute stress. Microarray analysis and qPCR identified a variety of genes that were differentially expressed. Pathway analysis showed that these genes were involved in immune response and regulation of metabolism process as activators or repressors. Further analysis identified that these changes may be related with CpG methylation of several genes. Therefore, the results from this study provide an enhanced understanding of the mechanisms that genetic and epigenetic regulations control meat quality and beef tenderness.

15.
Nat Commun ; 13(1): 4257, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871075

RESUMO

Fate-determining transcription factors (TFs) can promote lineage-restricted transcriptional programs from common progenitor states. The inner cell mass (ICM) of mouse blastocysts co-expresses the TFs NANOG and GATA6, which drive the bifurcation of the ICM into either the epiblast (Epi) or the primitive endoderm (PrE), respectively. Here, we induce GATA6 in embryonic stem cells-that also express NANOG-to characterize how a state of co-expression of opposing TFs resolves into divergent lineages. Surprisingly, we find that GATA6 and NANOG co-bind at the vast majority of Epi and PrE enhancers, a phenomenon we also observe in blastocysts. The co-bound state is followed by eviction and repression of Epi TFs, and quick remodeling of chromatin and enhancer-promoter contacts thus establishing the PrE lineage while repressing the Epi fate. We propose that co-binding of GATA6 and NANOG at shared enhancers maintains ICM plasticity and promotes the rapid establishment of Epi- and PrE-specific transcriptional programs.


Assuntos
Fator de Transcrição GATA6 , Regulação da Expressão Gênica no Desenvolvimento , Animais , Blastocisto/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Endoderma/metabolismo , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Transdução de Sinais
16.
Elife ; 112022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175194

RESUMO

The ventricular zone (VZ) of the nervous system contains radial glia cells that were originally considered relatively homogenous in their gene expression, but a detailed characterization of transcriptional diversity in these VZ cells has not been reported. Here, we performed single-cell RNA sequencing to characterize transcriptional heterogeneity of neural progenitors within the VZ and subventricular zone (SVZ) of the ganglionic eminences (GEs), the source of all forebrain GABAergic neurons. By using a transgenic mouse line to enrich for VZ cells, we characterize significant transcriptional heterogeneity, both between GEs and within spatial subdomains of specific GEs. Additionally, we observe differential gene expression between E12.5 and E14.5 VZ cells, which could provide insights into temporal changes in cell fate. Together, our results reveal a previously unknown spatial and temporal genetic diversity of VZ cells in the ventral forebrain that will aid our understanding of initial fate decisions in the forebrain.


Assuntos
Células-Tronco Neurais , Prosencéfalo , Animais , Diferenciação Celular/fisiologia , Ventrículos Laterais , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo
17.
Nat Commun ; 13(1): 4196, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858915

RESUMO

A comprehensive characterization of epigenomic organization in the embryonic mouse forebrain will enhance our understanding of neurodevelopment and provide insight into mechanisms of neurological disease. Here we collected single-cell chromatin accessibility profiles from four distinct neurogenic regions of the embryonic mouse forebrain using single nuclei ATAC-Seq (snATAC-Seq). We identified thousands of differentially accessible peaks, many restricted to distinct progenitor cell types or brain regions. We integrated snATAC-Seq and single cell transcriptome data to characterize changes of chromatin accessibility at enhancers and promoters with associated transcript abundance. Multi-modal integration of histone modifications (CUT&Tag and CUT&RUN), promoter-enhancer interactions (Capture-C) and high-order chromatin structure (Hi-C) extended these initial observations. This dataset reveals a diverse chromatin landscape with region-specific regulatory mechanisms and genomic interactions in distinct neurogenic regions of the embryonic mouse brain and represents an extensive public resource of a 'ground truth' epigenomic landscape at this critical stage of neurogenesis.


Assuntos
Cromatina , Epigenoma , Animais , Cromatina/genética , Código das Histonas , Camundongos , Prosencéfalo , Sequências Reguladoras de Ácido Nucleico
18.
Sci Adv ; 8(48): eadd4136, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449618

RESUMO

Cohesin rings interact with DNA and modulate the expression of thousands of genes. NIPBL loads cohesin onto chromosomes, and WAPL takes it off. Haploinsufficiency for NIPBL causes a developmental disorder, Cornelia de Lange syndrome (CdLS), that is modeled by Nipbl+/- mice. Mutations in WAPL have not been shown to cause disease or gene expression changes in mammals. Here, we show dysregulation of >1000 genes in WaplΔ/+ embryonic mouse brain. The patterns of dysregulation are highly similar in Wapl and Nipbl heterozygotes, suggesting that Wapl mutations may also cause human disease. Since WAPL and NIPBL have opposite effects on cohesin's association with DNA, we asked whether decreasing Wapl dosage could correct phenotypes seen in Nipbl+/- mice. Gene expression and embryonic growth are partially corrected, but perinatal lethality is not. Our data are consistent with the view that cohesin dynamics play a key role in regulating gene expression.


Assuntos
Encéfalo , Transcriptoma , Humanos , Feminino , Gravidez , Animais , Camundongos , Fenótipo , Mutação , Heterozigoto , Mamíferos , Proteínas de Ciclo Celular/genética , Proteínas
19.
BMC Genomics ; 12: 501, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21992110

RESUMO

BACKGROUND: Marek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV) and characterized by T cell lymphoma and infiltration of lymphoid cells into various organs such as liver, spleen, peripheral nerves and muscle. Resistance to MD and disease risk have long been thought to be influenced both by genetic and environmental factors, the combination of which contributes to the observed outcome in an individual. We hypothesize that after MDV infection, genes related to MD-resistance or -susceptibility may exhibit different trends in transcriptional activity in chicken lines having a varying degree of resistance to MD. RESULTS: In order to study the mechanisms of resistance and susceptibility to MD, we performed genome-wide temporal expression analysis in spleen tissues from MD-resistant line 63, susceptible line 72 and recombinant congenic strain M (RCS-M) that has a phenotype intermediate between lines 63 and 72 after MDV infection. Three time points of the MDV life cycle in chicken were selected for study: 5 days post infection (dpi), 10dpi and 21dpi, representing the early cytolytic, latent and late cytolytic stages, respectively. We observed similar gene expression profiles at the three time points in line 63 and RCS-M chickens that are both different from line 72. Pathway analysis using Ingenuity Pathway Analysis (IPA) showed that MDV can broadly influence the chickens irrespective of whether they are resistant or susceptible to MD. However, some pathways like cardiac arrhythmia and cardiovascular disease were found to be affected only in line 72; while some networks related to cell-mediated immune response and antigen presentation were enriched only in line 63 and RCS-M. We identified 78 and 30 candidate genes associated with MD resistance, at 10 and 21dpi respectively, by considering genes having the same trend of expression change after MDV infection in lines 63 and RCS-M. On the other hand, by considering genes with the same trend of expression change after MDV infection in lines 72 and RCS-M, we identified 78 and 43 genes at 10 and 21dpi, respectively, which may be associated with MD-susceptibility. CONCLUSIONS: By testing temporal transcriptome changes using three representative chicken lines with different resistance to MD, we identified 108 candidate genes for MD-resistance and 121 candidate genes for MD-susceptibility over the three time points. Genes included in our resistance or susceptibility genes lists that are also involved in more than 5 biofunctions, such as CD8α, IL8, USP18, and CTLA4, are considered to be important genes involved in MD-resistance or -susceptibility. We were also able to identify several biofunctions related with immune response that we believe play an important role in MD-resistance.


Assuntos
Galinhas/genética , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Doença de Marek/genética , Transcriptoma , Animais , Endogamia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
20.
Front Mol Neurosci ; 14: 712609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630033

RESUMO

Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA