Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(2): 026701, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277598

RESUMO

Coupling of orbital degree of freedom with a spin exchange, i.e., Kugel-Khomskii-type interaction (KK), governs a host of material properties, including colossal magnetoresistance, enhanced magnetoelectric response, and photoinduced high-temperature magnetism. In general, KK-type interactions lead to deviation in experimental observables of coupled Hamiltonian near or below the magnetic transition. Using diffraction and spectroscopy experiments, here we report anomalous changes in lattice parameters, electronic states, spin dynamics, and phonons at four times the Néel transition temperature (T_{N}) in CrVO_{4}. The temperature is significantly higher than other d-orbital compounds such as manganites and vanadates, where effects are limited to near or below T_{N}. The experimental observations are rationalized using first-principles and Green's function-based phonon and spin simulations that show unprecedentedly strong KK-type interactions via a superexchange process and an orbital-selective spin-phonon coupling coefficient at least double the magnitude previously reported for strongly coupled spin-phonon systems. Our results present an opportunity to explore the effect of KK-type interactions and spin-phonon coupling well above T_{N} and possibly bring various properties closer to application, for example, strong room-temperature magnetoelectric coupling.

2.
Phys Rev Lett ; 126(9): 096401, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750153

RESUMO

The topology of the Fermi surface controls the electronic response of a metal, including charge density wave (CDW) formation. A topology conducive for Fermi surface nesting (FSN) allows the electronic susceptibility χ_{0} to diverge and induce a CDW at wave vector q_{CDW}. Kohn extended the implications of FSN to show that the imaginary part of the lattice dynamical susceptibility χ_{L}^{''} also responds anomalously for all phonon branches at q_{CDW}-a phenomenon referred to as the Kohn anomaly. However, materials exhibiting multiple Kohn anomalies remain rare. Using first-principles simulations of χ_{0} and χ_{L}^{''}, and previous scattering measurements [Crummett et al., Phys. Rev. B 19, 6028 234 (1979)PRBMDO0163-1829], we show that α-uranium harbors multiple Kohn anomalies enabled by the combined effect of FSN and "hidden" nesting, i.e., nesting of electronic states above and below the Fermi surface. FSN and hidden nesting lead to a ridgelike feature in the real part of χ_{0}, allowing interatomic forces to modulate strongly and multiple Kohn anomalies to emerge. These results emphasize the importance of hidden nesting in controlling χ_{0} and χ_{L}^{''} to exploit electronic and lattice states and enable engineering of advanced materials, including topological Weyl semimetals and superconductors.

3.
Inorg Chem ; 56(6): 3335-3348, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28263590

RESUMO

Herein we report the high-temperature crystal chemistry of K2Ce(PO4)2 as observed from a joint in situ variable-temperature X-ray diffraction (XRD) and Raman spectroscopy as well as ab initio density functional theory (DFT) calculations. These studies revealed that the ambient-temperature monoclinic (P21/n) phase reversibly transforms to a tetragonal (I41/amd) structure at higher temperature. Also, from the experimental and theoretical calculations, a possible existence of an orthorhombic (Imma) structure with almost zero orthorhombicity is predicted which is closely related to tetragonal K2Ce(PO4)2. The high-temperature tetragonal phase reverts back to ambient monoclinic phase at much lower temperature in the cooling cycle compared to that observed at the heating cycle. XRD studies revealed the transition is accompanied by volume expansion of about 14.4%. The lower packing density of the high-temperature phase is reflected in its significantly lower thermal expansion coefficient (αV = 3.83 × 10-6 K-1) compared to that in ambient monoclinic phase (αV = 41.30 × 10-6 K-1). The coexistences of low- and high-temperature phases, large volume discontinuity in transition, and large hysteresis of transition temperature in heating and cooling cycles, as well as drastically different structural arrangement are in accordance with the first-order reconstructive nature of the transition. Temperature-dependent Raman spectra indicate significant changes around 783 K attributable to the phase transition. In situ low-temperature XRD, neutron diffraction, and Raman spectroscopic studies revealed no structural transition below ambient temperature. Raman mode frequencies, temperature coefficients, and reduced temperature coefficients for both monoclinic and tetragonal phases of K2Ce(PO4)2 have been obtained. Several lattice and external modes of rigid PO4 units are found to be strongly anharmonic. The observed phase transition and structures as well as vibrational properties of both ambient- and high-temperature phases were complimented by DFT calculations. The optical absorption studies on monoclinic phase indicated a band gap of about 2.46 eV. The electronic structure calculations on ambient-temperature monoclinic and high-temperature phases were also carried out.

4.
Phys Chem Chem Phys ; 19(27): 17967-17984, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28664955

RESUMO

We present structural and dynamical studies of layered vanadium pentaoxide (V2O5). The temperature dependent X-ray diffraction measurements reveal highly anisotropic and anomalous thermal expansion from 12 K to 853 K. The results do not show any evidence of structural phase transition or decomposition of α-V2O5, contrary to the previous transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) experiments. The inelastic neutron scattering measurements performed up to 673 K corroborate the result of our X-ray diffraction measurements. The analysis of the experimental data is carried out using ab initio lattice dynamics calculations. The important role of van der Waals dispersion and Hubbard interactions in the structure and dynamics is revealed through ab initio calculations. The calculated anisotropic thermal expansion behavior agrees well with temperature dependent X-ray diffraction. The mechanism of anisotropic thermal expansion and anisotropic linear compressibility is discussed in terms of calculated anisotropy in the Grüneisen parameters and elastic coefficients. The calculated Gibbs free energy in various phases of V2O5 is used to understand the high pressure and temperature phase diagram of the compound.

5.
Phys Chem Chem Phys ; 19(23): 15512-15520, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28581550

RESUMO

ß-Eucryptite (LiAlSiO4) is known to show super-ionic conductivity above 700 K. We performed inelastic neutron scattering measurements in ß-eucryptite over 300-900 K and calculated the phonon spectrum using classical molecular dynamics (MD) simulations. The MD simulations were used to interpret the inelastic neutron spectra at high temperatures. The calculated diffusion coefficient for Li showed superionic conduction above 1200 K in the perfect crystal. The presence of defects was found to enhance diffusion and lower the temperature for Li diffusion. The calculated trajectory of Li atoms at higher temperatures shows that preferential movement of the Li atom is along the hexagonal c-axis, which is further confirmed by the ab initio calculated activation energy profile for cooperative lithium ion displacements. The inter- and intra-channel correlated motion of Li along the hexagonal c-axis gives the minimum energy pathway for Li ion conduction in LiAlSiO4.

6.
ACS Appl Mater Interfaces ; 16(26): 33752-33762, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38902888

RESUMO

The sensitivity of ferroelectric domain walls to external stimuli makes them functional entities in nanoelectronic devices. Specifically, optically driven domain reconfiguration with in-plane polarization is advantageous and thus is highly sought. Here, we show the existence of in-plane polarized subdomains imitating a single domain state and reversible optical control of its domain wall movement in a single-crystal of ferroelectric BaTiO3. Similar optical control in the domain configuration of nonpolar ferroelastic material indicates that long-range ferroelectric polarization is not essential for the optical control of domain wall movement. Instead, flexoelectricity is found to be an essential ingredient for the optical control of the domain configuration, and hence, ferroelastic materials would be another possible candidate for nanoelectronic device applications.

7.
J Phys Condens Matter ; 34(29)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35533647

RESUMO

The electronic transport behaviour of CsAgO has been discussed using the theory beyond relaxation time approximation from room temperature to 800 K. Different scattering mechanisms such as acoustic deformation potential scattering, impurity phonon scattering, and polar optical phonon scattering are considered for calculating carrier scattering rates to predict the absolute values of thermoelectric coefficients. The scattering lifetime is of the order of 10-14s. The lattice thermal transport properties like lattice thermal conductivity and phonon-lifetime have been evaluated. The calculated lattice thermal conductivity equals 0.12 and 0.18 W mK-1along 'a' and 'c' axes, respectively, at room temperature, which is very low compared to state-of-the-art thermoelectric materials. The anisotropy in the electrical conductivity indicates that the holes are favourable for the out-of-plane thermoelectrics while the electrons for in-plane thermoelectrics. The thermoelectric figure of merit for holes and electrons is nearly same with a value higher than 1 at 800 K for different doping concentrations. The value of the thermoelectric figure of merit is significantly higher than the existing oxide materials, which might be appealing for future applications in CsAgO.

8.
J Phys Condens Matter ; 34(12)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34920441

RESUMO

Extension of the topological concepts to the bosonic systems has led to the prediction of topological phonons in materials. Here we discuss the topological phonons and electronic structure of Li2BaX (X = Si, Ge, Sn, and Pb) materials using first-principles theoretical modelling. A careful analysis of the phonon spectrum of Li2BaX reveals an optical mode inversion with the formation of nodal line states in the Brillouin zone. Our electronic structure results reveal a double band inversion at the Γ point with the formation of inner nodal-chain states in the absence of spin-orbit coupling (SOC). Inclusion of the SOC opens a materials-dependent gap at the band crossing points and transitions the system into a trivial insulator state. We also discuss the lattice thermal conductivity and transport properties of Li2BaX materials. Our results show that coexisting phonon and electron nontrivial topology with robust transport properties would make Li2BaX materials appealing for device applications.

9.
J Phys Condens Matter ; 33(42)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34315145

RESUMO

Ab initiomolecular dynamics simulations are used to elucidate the mechanism of the phase transition in shock experiments from hexagonal graphite (HG) to hexagonal diamond (HD) or to cubic diamond (CD). The transition from HG to HD is found to occur swiftly in very small time of 0.2 ps, with large cooperative displacements of all the atoms. We observe that alternate layers of atoms in HG slide in opposite directions by 1/6 along the ±[2, 1, 0], which is about 0.7 Å, while simultaneously puckering by about ±0.25 Å perpendicular to thea-bplane. The transition from HG to CD occurred with more complex cooperative displacements. In this case, six successive HG layers slide in pairs by 1/3 along [0, 1, 0], [-1, -1, 0] and [1, 0, 0], respectively along with the puckering as above. We have also performed calculations of the phonon spectrum in HG at high pressure, which reveal soft phonon modes that may facilitate the phase transition involving the sliding and puckering of the HG layers. We have further calculated the Gibbs free energy, including the vibrational energy and entropy, and derived the phase diagram between HG and CD phases.

10.
J Phys Condens Matter ; 33(12)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33378273

RESUMO

Direct engineering of material properties through exploitation of spin, phonon, and charge-coupled degrees of freedom is an active area of development in materials science. However, the relative contribution of the competing orders to controlling the desired behavior is challenging to decipher. In particular, the independent role of phonons, magnons, and electrons, quasiparticle coupling, and relative contributions to the phase transition free energy largely remain unexplored, especially for magnetic phase transitions. Here, we study the lattice and magnetic dynamics of biferroic yttrium orthochromite using Raman, infrared, and inelastic neutron spectroscopy techniques, supporting our experimental results with first-principles lattice dynamics and spin-wave simulations across the antiferromagnetic transition atTN∼ 138 K. Spectroscopy data and simulations together with the heat capacity (Cp) measurements, allow us to quantify individual entropic contributions from phonons (0.01 ± 0.01kBatom-1), dilational (0.03 ± 0.01kBatom-1), and magnons (0.11 ± 0.01kBatom-1) acrossTN. High-resolution phonon measurements conducted in a magnetic field show that anomalousT-dependence of phonon energies acrossTNoriginates from magnetoelastic coupling. Phonon scattering is primarily governed by the phonon-phonon coupling, with little contribution from magnon-phonon coupling, short-range spin correlations, or magnetostriction effects; a conclusion further supported by our thermal conductivity measurements conducted up to 14 T, and phenomenological modeling.

11.
J Phys Condens Matter ; 32(42): 425502, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32575079

RESUMO

We present a thorough density functional theory based computational study of crystalline properties of cubane caged potential energetic material octanitrocubane (ONC). As expected for a layered molecular solid, van der Waals corrections are inevitable and the same has been incorporated to capture the ground state properties more accurately. Study of Born effective charge and zone centered phonon frequencies using density functional perturbation theory reveals the important role of N2, N4 type nitrogen and associated oxygen atoms in contributing to the high intensity infrared modes. From the calculated electronic band structure we can conclude that ONC is an insulator with a band gap of 5.31 eV. The optical properties of ONC are found to be nearly isotropic in low energy region in spite of strong anisotropic crystal structure.

12.
J Phys Condens Matter ; 32(50)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32985416

RESUMO

We report detailed temperature-dependent inelastic neutron scattering andab initiolattice dynamics investigation of magnetic perovskites YCrO3and LaCrO3. The magnetic neutron scattering from the Cr ions exhibits significant changes with temperature and dominates at low momentum transfer regime.Ab initiocalculations performed including magnetic interactions show that the effect of magnetic interactions is very significant on the low- as well as high-energy phonon modes. We have also shown that the inelastic neutron spectrum of YCrO3mimics the magnon spectrum from a G-type antiferromagnetic system, which is consistent with previously reported magnetic structure in the compound. The pressure-dependentab initiolattice dynamics calculations are used to calculate the anisotropic thermal expansion behaviour in orthorhombic YCrO3, which is in excellent agreement with the available experimental data in the paramagnetic phase. We identify that the low energy anharmonic phonon modes involving Y vibrations contribute maximum to the thermal expansion behaviour.

13.
Front Chem ; 6: 331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155457

RESUMO

We have carried out first principles calculations of the vibrational and thermodynamic behavior in NiSi and isostructural compound NiGe. Phonon density of states has also been measured in NiSi using inelastic neutron scattering techniques. We find that the vibrational spectra of the two compounds are very different, due to the difference in the size and mass of Si and Ge. Interesting anomalous thermal behavior of NiSi due to anharmonic phonons is brought out well in our calculations, particularly the negative thermal expansion (NTE) along the b-axis of the orthorhombic unit cell. Large difference in thermal expansion behavior of NiSi and NiGe is very well reproduced by the calculations. Additionally, calculations enable to identify the phonon modes which lend major contribution to the negative thermal expansion behavior in NiSi, and reasons for negligible NTE in NiGe. Such typical representative modes at the zone-boundary along b-axis involve transverse vibrations of Si/Ge along c-axis. PACS numbers: 78.70.Nx, 63.20.-e, 65.40.-b.

14.
Front Chem ; 6: 544, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483494

RESUMO

We have performed temperature dependent inelastic neutron scattering measurements to study the anharmonicity of phonon spectra of AgC4N3. The analysis and interpretation of the experimental spectra is done using ab-initio lattice dynamics calculations. The calculated phonon spectrum over the entire Brillouin zone is used to derive linear thermal expansion coefficients. The effect of van der Waals interaction on structure stability has been investigated using advanced density functional methods. The calculated isothermal equation of states implies a negative linear compressibility along the c-axis of the crystal, which also leads to a negative thermal expansion along this direction. The role of elastic properties inducing the observed anomalous lattice behavior is discussed.

15.
J Phys Condens Matter ; 28(4): 045402, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26751175

RESUMO

Nickel cyanide is a layered material showing markedly anisotropic behaviour. High-pressure neutron diffraction measurements show that at pressures up to 20.1 kbar, compressibility is much higher in the direction perpendicular to the layers, c, than in the plane of the strongly chemically bonded metal-cyanide sheets. Detailed examination of the behaviour of the tetragonal lattice parameters, a and c, as a function of pressure reveal regions in which large changes in slope occur, for example, in c(P) at 1 kbar. The experimental pressure dependence of the volume data is fitted to a bulk modulus, B0, of 1050 (20) kbar over the pressure range 0-1 kbar, and to 124 (2) kbar over the range 1-20.1 kbar. Raman spectroscopy measurements yield additional information on how the structure and bonding in the Ni(CN)2 layers change with pressure and show that a phase change occurs at about 1 kbar. The new high-pressure phase, (Phase PII), has ordered cyanide groups with sheets of D4h symmetry containing Ni(CN)4 and Ni(NC)4 groups. The Raman spectrum of phase PII closely resembles that of the related layered compound, Cu1/2Ni1/2(CN)2, which has previously been shown to contain ordered C≡N groups. The phase change, PI to PII, is also observed in inelastic neutron scattering studies which show significant changes occurring in the phonon spectra as the pressure is raised from 0.3 to 1.5 kbar. These changes reflect the large reduction in the interlayer spacing which occurs as Phase PI transforms to Phase PII and the consequent increase in difficulty for out-of-plane atomic motions. Unlike other cyanide materials e.g. Zn(CN)2 and Ag3Co(CN)6, which show an amorphization and/or a decomposition at much lower pressures (~100 kbar), Ni(CN)2 can be recovered after pressurising to 200 kbar, albeit in a more ordered form.

16.
J Phys Condens Matter ; 22(31): 315701, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21399367

RESUMO

To shed light on the role of magnetism on the superconducting mechanism of the oxygen-free FeAs pnictides, we investigate the effect of magnetic ordering on phonon dynamics in the low-temperature orthorhombic parent compounds, which present a spin density wave. The study covers both the 122 (AFe(2)As(2); A = Ca, Sr, Ba) and 1111 (AFeAsF; A = Ca, Sr) phases. We extend our recent work on the Ca (122 and 1111) and Ba (122) cases by treating, computationally and experimentally, the 122 and 1111 Sr compounds. The effect of magnetic ordering is investigated through detailed non-magnetic and magnetic lattice dynamical calculations. The comparison of the experimental and calculated phonon spectra shows that the magnetic interactions/ordering have to be included in order to reproduce well the measured density of states. This highlights a spin-correlated phonon behavior which is more pronounced than the apparently weak electron-phonon coupling estimated in these materials. Furthermore, there is no noticeable difference between phonon spectra of the 122 Ba and Sr, whereas there are substantial differences when comparing these to CaFe(2)As(2) originating from different aspects of structure and bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA