Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunity ; 46(1): 106-119, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28099860

RESUMO

A hallmark of autoimmunity in murine models of lupus is the formation of germinal centers (GCs) in lymphoid tissues where self-reactive B cells expand and differentiate. In the host response to foreign antigens, follicular dendritic cells (FDCs) maintain GCs through the uptake and cycling of complement-opsonized immune complexes. Here, we examined whether FDCs retain self-antigens and the impact of this process in autoantibody secretion in lupus. We found that FDCs took up and retained self-immune complexes composed of ribonucleotide proteins, autoantibody, and complement. This uptake, mediated through CD21, triggered endosomal TLR7 and led to the secretion of interferon (IFN) α via an IRF5-dependent pathway. Blocking of FDC secretion of IFN-α restored B cell tolerance and reduced the amount of GCs and pathogenic autoantibody. Thus, FDCs are a critical source of the IFN-α driving autoimmunity in this lupus model. This pathway is conserved in humans, suggesting that it may be a viable therapeutic target in systemic lupus erythematosus.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Células Dendríticas Foliculares/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Autoantígenos/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Interferon-alfa/biossíntese , Interferon-alfa/imunologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Reação em Cadeia da Polimerase , Receptor 7 Toll-Like/imunologia , Transcriptoma
2.
J Immunol ; 197(2): 491-503, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27296665

RESUMO

ICOS, a member of the CD28 family, represents a key molecule that regulates adaptive responses to foreign Ags. ICOS is prominently expressed on T follicular helper (TFH) cells, a specialized CD4(+) T cell subset that orchestrates B cell differentiation within the germinal centers and humoral response. However, the contribution of ICOS and TFH cells to autoantibody profiles under pathological conditions has not been thoroughly investigated. We used the Sle1 lupus-prone mouse model to examine the role of ICOS in the expansion and function of pathogenic TFH cells. Genetic deletion of ICOS impacted the expansion of TFH cells in B6.Sle1 mice and inhibited the differentiation of B lymphocytes into plasma cells. The phenotypic changes observed in B6.Sle1-ICOS-knockout mice were also associated with a significant reduction in class-switched IgG, and anti-nucleosomal IgG-secreting B cells compared with B6.Sle1 animals. The level of vascular cell adhesion protein 1, a molecule that was shown to be elevated in patients with SLE and in lupus models, was also increased in an ICOS-dependent manner in Sle1 mice and correlated with autoantibody levels. The elimination of ICOS-expressing CD4(+) T cells in B6.Sle1 mice, using a glyco-engineered anti-ICOS-depleting Ab, resulted in a significant reduction in anti-nucleosomal autoantibodies. Our results indicate that ICOS regulates the ontogeny and homeostasis of B6.Sle1 TFH cells and influences the function of TFH cells during aberrant germinal center B cell responses. Therapies targeting the ICOS signaling pathway may offer new opportunities for the treatment of lupus and other autoimmune diseases.


Assuntos
Tolerância Imunológica/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição 1 de Leucemia de Células Pré-B , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
3.
Mediators Inflamm ; 2015: 236451, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078491

RESUMO

Autoantibodies against citrullinated proteins are diagnostic for rheumatoid arthritis. However, the molecular mechanisms driving protein citrullination in patients with rheumatoid arthritis remain poorly understood. Using two independent western blotting methods, we report that agents that trigger a sufficiently large influx of extracellular calcium ions induced a marked citrullination of multiple proteins in human neutrophils, monocytes, and, to a lesser extent, T lymphocytes and natural killer cells, but not B lymphocytes or dendritic cells. This response required 250-1,000 µM extracellular calcium and was prevented by EDTA. Other neutrophil activating stimuli, such as formyl-peptides, GM-CSF, IL-6, IL8, TNFα, or phorbol ester, did not induce any detectable increase in protein citrullination, suggesting that receptor-induced calcium mobilization is insufficient to trigger hypercitrullination. We conclude that loss of membrane integrity and subsequent influx of high levels of calcium, which can be triggered by perforin released from cytotoxic cells or complement mediated formation of membrane attack complexes in the joints of rheumatoid arthritis patients, are sufficient to induce extensive protein citrullination in immune cells, notably neutrophils. This mechanism may provide the citrullinated autoantigens that drive autoimmunity in this devastating disease.


Assuntos
Citrulina/metabolismo , Leucócitos/metabolismo , Neutrófilos/metabolismo , Artrite Reumatoide/metabolismo , Western Blotting , Células Cultivadas , Humanos , Ionomicina/farmacologia , Leucócitos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Perforina/farmacologia
4.
Ann Clin Transl Neurol ; 10(12): 2413-2420, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804003

RESUMO

Inebilizumab, a humanized, glycoengineered, IgG1 monoclonal antibody that depletes CD19+ B-cells, is approved to treat aquaporin 4 (AQP4) IgG-seropositive neuromyelitis optica spectrum disorder (NMOSD). Inebilizumab is afucosylated and engineered for enhanced affinity to Fc receptor III-A (FCGR3A) receptors on natural killer cells to maximize antibody-dependent cellular cytotoxicity. Previously, the F allele polymorphism at amino acid 158 of the FCGR3A gene (F158) was shown to decrease IgG-binding affinity and reduce rituximab (anti-CD20) efficacy for NMOSD attack prevention. In contrast, our current findings from inebilizumab-treated NMOSD patients indicate similar clinical outcomes between those with F158 and V158 allele genotypes.


Assuntos
Neuromielite Óptica , Humanos , Neuromielite Óptica/tratamento farmacológico , Neuromielite Óptica/genética , Aquaporina 4/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoglobulina G , Receptores de IgG/genética
5.
Br J Haematol ; 155(4): 426-37, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21902688

RESUMO

Human cluster of differentiation (CD) antigen 19 is a B cell-specific surface antigen and an attractive target for therapeutic monoclonal antibody (mAb) approaches to treat malignancies of B cell origin. MEDI-551 is an affinity-optimized and afucosylated CD19 mAb with enhanced antibody-dependent cellular cytotoxicity (ADCC). The results from in vitro ADCC assays with Natural Killer cells as effector cells, demonstrate that MEDI-551 is effective at lower mAb doses than rituximab with multiple cell lines as well as primary chronic lymphocytic leukaemia and acute lymphoblastic leukaemia samples. Targeting CD19 with MEDI-551 was also effective in several severe combined immunodeficiency lymphoma models. Furthermore, the combination of MEDI-551 with rituximab resulted in prolonged suppression of tumour growth, demonstrating that therapeutic mAbs with overlapping effector function can be combined for greater tumour growth inhibition. Together, the data demonstrate that MEDI-551 has potent antitumour activity in preclinical models of B cell malignancies. The results also suggest that the combination of the ADCC-enhanced CD19 mAb with an anti-CD20 mAb could be a novel approach for the treatment of B cell lymphomas.


Assuntos
Anticorpos Monoclonais/farmacologia , Antígenos CD19/imunologia , Leucemia de Células B/imunologia , Leucemia de Células B/terapia , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Murinos/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID , Engenharia de Proteínas/métodos , Receptores Fc/imunologia , Rituximab , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Transl Med ; 13(595)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039741

RESUMO

Plasmacytoid dendritic cells (pDCs) not only are specialized in their capacity to secrete large amounts of type I interferon (IFN) but also serve to enable both innate and adaptive immune responses through expression of additional proinflammatory cytokines, chemokines, and costimulatory molecules. Persistent activation of pDCs has been demonstrated in a number of autoimmune diseases. To evaluate the potential benefit of depleting pDCs in autoimmunity, a monoclonal antibody targeting the pDC-specific marker immunoglobulin-like transcript 7 was generated. This antibody, known as VIB7734, which was engineered for enhanced effector function, mediated rapid and potent depletion of pDCs through antibody-dependent cellular cytotoxicity. In cynomolgus monkeys, treatment with VIB7734 reduced pDCs in blood below the lower limit of normal by day 1 after the first dose. In two phase 1 studies in patients with autoimmune diseases, VIB7734 demonstrated an acceptable safety profile, comparable to that of placebo. In individuals with cutaneous lupus, VIB7734 profoundly reduced both circulating and tissue-resident pDCs, with a 97.6% median reduction in skin pDCs at study day 85 in VIB7734-treated participants. Reductions in pDCs in the skin correlated with a decrease in local type I IFN activity as well as improvements in clinical disease activity. Biomarker analysis suggests that responsiveness to pDC depletion therapy may be greater among individuals with high baseline type I IFN activity, supporting a central role for pDCs in type I IFN production in autoimmunity and further development of VIB7734 in IFN-associated diseases.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Cutâneo , Autoimunidade , Quimiocinas , Células Dendríticas , Humanos
7.
J Pharmacol Exp Ther ; 335(1): 213-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20605905

RESUMO

The pan B-cell surface antigen CD19 is an attractive target for therapeutic monoclonal antibody (mAb) approaches. We have generated a new afucosylated anti-human (hu)CD19 mAb, MEDI-551, with increased affinity to human FcγRIIIA and mouse FcγRIV and enhanced antibody-dependent cellular cytotoxicity (ADCC). During in vitro ADCC assays with B-cell lines, MEDI-551 is effective at much lower mAb concentrations than the fucosylated parental mAb anti-CD19-2. Furthermore, the afucosylated CD19 mAb MEDI-551 depleted B cells from normal donor peripheral blood mononuclear cell samples in an autologous ADCC assay, as well as blood and tissue B cells in human CD19/CD20 double transgenic (Tg) mice at lower concentrations than that of the positive control mAb rituximab. In huCD19/CD20 Tg mice, both macrophage-mediated phagocytosis and complement-dependent cytotoxicity contribute to depletion with rituximab; MEDI-551 did not require complement for maximal B-cell depletion. Furthermore, extended B-cell depletion from the blood and spleen was achieved with MEDI-551, which is probably explained by bone marrow B-cell depletion in huCD19/CD20 Tg mice relative to the control mAb rituximab. In summary, MEDI-551 has potent B-cell-depleting activity in vitro and in vivo and may be a promising new approach for the treatment of B-cell malignancies and autoimmune diseases.


Assuntos
Antígenos CD19/imunologia , Linfócitos B/fisiologia , Animais , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Murinos , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD19/genética , Proliferação de Células/efeitos dos fármacos , Fucose/química , Humanos , Imunoglobulina G/imunologia , Camundongos , Camundongos Transgênicos , Engenharia de Proteínas , Rituximab
8.
Front Immunol ; 9: 34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403504

RESUMO

Protein citrullination catalyzed by peptidyl arginine deiminase (PADs) is involved in autoimmune disease pathogenesis, especially in rheumatoid arthritis. Calcium is a key regulator of PAD activity, but under normal physiological conditions it remains uncertain how intracellular calcium levels can be raised to sufficiently high levels to activate these enzymes. In pursuit of trying to identify other factors that influence PAD activity, we identified bicarbonate as a potential regulator of PAD activity. We demonstrate that physiological levels of bicarbonate upregulate citrullination by recombinant PAD2/4 and endogenous PADs in neutrophils. The impact of bicarbonate is independent of calcium and pH. Adding bicarbonate to commercial PAD activity kits could increase assay performance and biological relevance. These results suggest that citrullination activity is regulated by multiple factors including calcium and bicarbonate. We also provide commentary on the current understanding of PAD regulation and future perspective of research in this area.


Assuntos
Artrite Reumatoide/patologia , Bicarbonatos/metabolismo , Cálcio/metabolismo , Citrulinação/fisiologia , Desiminases de Arginina em Proteínas/metabolismo , Artrite Reumatoide/enzimologia , Citrulina/metabolismo , Humanos , Neutrófilos/enzimologia , Proteína-Arginina Desiminase do Tipo 2 , Proteína-Arginina Desiminase do Tipo 4
9.
Sci Rep ; 8(1): 15228, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323221

RESUMO

Neutrophils are critical for the defense against pathogens, in part through the extrusion of extracellular DNA traps, phagocytosis, and the production of reactive oxygen species. Neutrophils may also play an important role in the pathogenesis of rheumatoid arthritis (RA) through the activation of protein arginine deiminases (PADs) that citrullinate proteins that subsequently act as autoantigens. We report that PAD4 is physically associated with the cytosolic subunits of the oxidative burst machinery, p47phox (also known as neutrophil cytosol factor 1, NCF1) and p67phox (NCF2). Activation of PAD4 by membranolytic insults that result in high levels of intracellular calcium (higher than physiological neutrophil activation) leads to rapid citrullination of p47phox/NCF1 and p67phox/NCF2, as well as their dissociation from PAD4. This dissociation prevents the assembly of an active NADPH oxidase complex and an oxidative burst in neutrophils stimulated by phorbol-ester or immune complexes. In further support of a substrate-to-inactive enzyme interaction, small-molecule PAD inhibitors also disrupt the PAD4-NCF complex and reduce oxidase activation and phagocytic killing of Staphylococcus aureus. This novel role of PAD4 in the regulation of neutrophil physiology suggests that targeting PAD4 with active site inhibitors for the treatment of RA may have a broader impact on neutrophil biology than just inhibition of citrullination.


Assuntos
Artrite Reumatoide/genética , NADPH Oxidases/genética , Desiminases de Arginina em Proteínas/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Membrana Celular/genética , Citrulinação/genética , Citosol/metabolismo , Humanos , Neutrófilos/enzimologia , Neutrófilos/patologia , Fagócitos/metabolismo , Fagocitose/genética , Proteína-Arginina Desiminase do Tipo 4 , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade
10.
Sci Transl Med ; 10(431)2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29514998

RESUMO

Systemic sclerosis (SSc) is a debilitating inflammatory and fibrotic disease that affects the skin and internal organs. Although the pathophysiology of SSc remains poorly characterized, mononuclear cells, mainly macrophages and T cells, have been implicated in inflammation and fibrosis. Inducible costimulator (ICOS), which is expressed on a subset of memory T helper (TH) and T follicular helper (TFH) cells, has been shown to be increased in SSc and associated with disease pathology. However, the identity of the relevant ICOS+ T cells and their contribution to inflammation and fibrosis in SSc are still unknown. We show that CD4+ ICOS-expressing T cells with a TFH-like phenotype infiltrate the skin of patients with SSc and are correlated with dermal fibrosis and clinical disease status. ICOS+ TFH-like cells were found to be increased in the skin of graft-versus-host disease (GVHD)-SSc mice and contributed to dermal fibrosis via an interleukin-21- and matrix metalloproteinase 12-dependent mechanism. Administration of an anti-ICOS antibody to GVHD-SSc mice prevented the expansion of ICOS+ TFH-like cells and inhibited inflammation and dermal fibrosis. Interleukin-21 neutralization in GVHD-SSc mice blocked disease pathogenesis by reducing skin fibrosis. These results identify ICOS+ TFH-like profibrotic cells as key drivers of fibrosis in a GVHD-SSc model and suggest that inhibition of these cells could offer therapeutic benefit for SSc.


Assuntos
Fibrose/imunologia , Fibrose/metabolismo , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Linfócitos T/metabolismo , Animais , Feminino , Fibrose/terapia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/terapia , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Interleucinas/antagonistas & inibidores , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Interleucina-21/metabolismo , Escleroderma Sistêmico/terapia , Pele/imunologia , Pele/metabolismo , Dermatopatias/imunologia , Dermatopatias/metabolismo , Dermatopatias/terapia
11.
Front Immunol ; 8: 1200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993780

RESUMO

Autoantibodies directed against citrullinated epitopes of proteins are highly diagnostic of rheumatoid arthritis (RA), and elevated levels of protein citrullination can be found in the joints of patients with RA. Calcium-dependent peptidyl-arginine deiminases (PAD) are the enzymes responsible for citrullination. PAD2 and PAD4 are enriched in neutrophils and likely drive citrullination under inflammatory conditions. PADs may be released during NETosis or cell death, but the mechanisms responsible for PAD activity under physiological conditions have not been fully elucidated. To understand how PADs citrullinate extracellular proteins, we investigated the cellular localization and activity of PAD2 and PAD4, and we report that viable neutrophils from healthy donors have active PAD4 exposed on their surface and spontaneously secrete PAD2. Neutrophil activation by some stimulatory agents increased the levels of immunoreactive PAD4 on the cell surface, and some stimuli reduced PAD2 secretion. Our data indicate that live neutrophils have the inherent capacity to express active extracellular PADs. These novel pathways are distinguished from intracellular PAD activation during NETosis and calcium influx-mediated hypercitrullination. Our study implies that extracellular PADs may have a physiological role under non-pathogenic conditions as well as a pathological role in RA.

12.
J Biol Chem ; 277(8): 6667-75, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11741921

RESUMO

The enzyme sphingosine kinase (SK) catalyzes the formation of sphingosine 1-phosphate (S1P), a bioactive lipid that acts extracellularly on G protein-coupled receptors of the S1P(1)/EDG-1 subfamily. Although S1P is formed in the cytosol of various cells, S1P release is not understood and is controversial because this lipid mediator is also regarded as a second messenger. In this report, we describe the existence of an extracellular S1P-generating system in vascular endothelial cells. Endothelial cells release SK constitutively and form S1P in the range of receptor stimulation. Levels of sphingosine but not ATP in the extracellular environment are rate-limiting. Treatment of endothelial cells with small interfering RNA for SK-1 transcript specifically inhibited SK export, and SK-1-transfected human embryonic kidney 293 cells exhibited enhanced release of SK-1. The export of SK-1 is constitutive and is inhibited by cytochalasin D and treatment at 4 degrees C but not by brefeldin A or nocodazole, suggesting that a nonclassical secretory pathway that requires the actin cytoskeleton dynamics is involved. Because S1P regulates angiogenesis and vascular maturation, we overexpressed SK-1 using an adenoviral vector in vivo in the Matrigel system of angiogenesis. Overexpression of SK-1 resulted in enhanced release of SK activity and induced angiogenesis and vascular maturation. These findings suggest that S1P is made in the extracellular milieu and that extracellular export of SK contributes to the action of S1P in the vascular system.


Assuntos
Endotélio Vascular/metabolismo , Regulação Enzimológica da Expressão Gênica , Lisofosfolipídeos , Neovascularização Fisiológica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Superfície Celular , Receptores Acoplados a Proteínas G , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Proteínas de Xenopus , Animais , Cálcio/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados , Citosol/metabolismo , Feminino , Inativação Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Rim , Cinética , Oócitos/fisiologia , Transporte Proteico , RNA Interferente Pequeno , RNA não Traduzido/genética , Receptores de Lisofosfolipídeos , Proteínas Repressoras/metabolismo , Transfecção , Xenopus , Homeobox 2 de Ligação a E-box com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA