Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 46(5): 835-848.e4, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514689

RESUMO

Monocytes give rise to macrophages and dendritic cells (DCs) under steady-state and inflammatory conditions, thereby contributing to host defense and tissue pathology. A common monocyte progenitor (cMoP) that is strictly committed to the monocyte lineage has been recently identified in mice. Here, we identified human cMoPs as a CLEC12AhiCD64hi subpopulation of conventional granulocyte-monocyte progenitors (cGMPs) in umbilical cord blood and in bone marrow. Human cMoPs gave rise to monocyte subsets without showing any potential for differentiating into myeloid or lymphoid cells. Within the cGMP population, we also identified revised GMPs that completely lacked DC and lymphoid potential. Collectively, our findings expand and revise the current understanding of human myeloid cell differentiation pathways.


Assuntos
Diferenciação Celular , Evolução Clonal , Células Precursoras de Monócitos e Macrófagos/citologia , Células Precursoras de Monócitos e Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Animais , Antígenos CD/metabolismo , Biomarcadores , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Análise por Conglomerados , Citocinas/metabolismo , Sangue Fetal/citologia , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos
2.
Hum Mol Genet ; 31(24): 4173-4182, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861646

RESUMO

Collapsin response mediator protein 2 (Crmp2) is an evolutionarily well-conserved tubulin-binding cytosolic protein that plays critical roles in the formation of neural circuitry in model organisms including zebrafish and rodents. No clinical evidence that CRMP2 variants are responsible for monogenic neurogenic disorders in humans presently exists. Here, we describe two patients with de novo non-synonymous variants (S14R and R565C) of CRMP2 and intellectual disability associated with hypoplasia of the corpus callosum. We further performed various functional assays of CRMP2 variants using zebrafish and zebrafish Crmp2 (abbreviated as z-CRMP2 hereafter) and an antisense morpholino oligonucleotide [AMO]-based experimental system in which crmp2-morphant zebrafish exhibit the ectopic positioning of caudal primary (CaP) motor neurons. Whereas the co-injection of wild-type z-CRMP2 mRNA suppressed the ectopic positioning of CaP motor neurons in Crmp2-morphant zebrafish, the co-injection of R566C or S15R, z-CRMP2, which corresponds to R565C and S14R of human CRMP2, failed to rescue the ectopic positioning. Transfection experiments of zebrafish or rat Crmp2 using plasmid vectors in HeLa cells, with or without a proteasome inhibitor, demonstrated that the expression levels of mutant Crmp2 protein encoded by R565C and S14R CRMP2 variants were decreased, presumably because of increased degradation by proteasomes. When we compared CRMP2-tubulin interactions using co-immunoprecipitation and cellular localization studies, the R565C and S14R mutations weakened the interactions. These results collectively suggest that the CRMP2 variants detected in the present study consistently led to the loss-of-function of CRMP2 protein and support the notion that pathogenic variants in CRMP2 can cause intellectual disabilities in humans.


Assuntos
Deficiência Intelectual , Peixe-Zebra , Animais , Humanos , Ratos , Células HeLa , Deficiência Intelectual/genética , Transfecção , Tubulina (Proteína)/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Am J Med Genet A ; : e63614, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562108

RESUMO

Sonic hedgehog signaling molecule (SHH) is a key molecule in the cilia-mediated signaling pathway and a critical morphogen in embryogenesis. The association between loss-of-function variants of SHH and holoprosencephaly is well established. In mice experiments, reduced or increased signaling of SHH have been shown to be associated with narrowing or excessive expansion of the facial midline, respectively. Herein, we report two unrelated patients with de novo truncating variants of SHH presenting with hypertelorism rather than hypotelorism. The first patient was a 13-year-old girl. Her facial features included hypertelorism, strabismus, telecanthus, malocclusion, frontal bossing, and wide widow's peak. She had borderline developmental delay and agenesis of the corpus callosum. She had a nonsense variant of SHH: Chr7(GRCh38):g.155802987C > T, NM_000193.4:c.1302G > A, p.(Trp434*). The second patient was a 25-year-old girl. Her facial features included hypertelorism and wide widow's peak. She had developmental delay and agenesis of the corpus callosum. She had a frameshift variant of SHH: Chr7(GRCh38):g.155803072_155803074delCGGinsT, NM_000193.4:c.1215_1217delCCGinsA, p.(Asp405Glufs*92). The hypertelorism phenotype contrasts sharply with the prototypical hypotelorism-holoprosencephaly phenotype associated with loss-of-function of SHH. We concluded that a subset of truncating variants of SHH could be associated with hypertelorism rather than hypotelorism.

4.
Pediatr Nephrol ; 39(8): 2347-2349, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38329589

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) can be a part of the VACTERL association, which represents the non-random combination of the following congenital anomalies: vertebral anomalies, anal anomalies, cardiac anomalies, tracheal-esophageal anomalies, kidney anomalies, and limb anomalies. VACTERL association is generally considered to be a non-genetic condition. Exceptions include a patient with a heterozygous nonsense SALL4 variant and anal stenosis, tetralogy of Fallot, sacro-vertebral fusion, and radial and thumb anomalies. SALL4 encodes a transcription factor that plays a critical role in kidney morphogenesis. Here, we report a patient with VACTERL association and a heterozygous 128-kb deletion spanning SALL4 who presented with renal hypoplasia, radial and atrio-septal defects, and patent ductus arteriosus. The present report of SALL4 deletion, in addition to a previously reported patient with VACTERL association phenotype and SALL4 nonsense mutation, further supports the notion that SALL4 haploinsufficiency can lead to VACTERL association.


Assuntos
Canal Anal , Esôfago , Cardiopatias Congênitas , Rim , Deformidades Congênitas dos Membros , Coluna Vertebral , Traqueia , Fatores de Transcrição , Humanos , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/diagnóstico , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/diagnóstico , Traqueia/anormalidades , Fatores de Transcrição/genética , Rim/anormalidades , Esôfago/anormalidades , Canal Anal/anormalidades , Coluna Vertebral/anormalidades , Masculino , Recém-Nascido , Anormalidades Múltiplas/genética , Feminino , Haploinsuficiência/genética
5.
Clin Genet ; 103(4): 466-471, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597280

RESUMO

Carotid body tumor (CBT) is classified as a paraganglioma (PGL). Here, we report the genetic background, protein expression pattern, and clinical findings of 30 Japanese CBT cases. Germline pathogenic or likely pathogenic (P/LP) variants of genes encoding succinate dehydrogenase subunits (SDHs) were detected in 15 of 30 cases (50%). The SDHB variants were the most frequently detected, followed by SDHA and SDHD variants. One case with SDHAF2 variant was bilateral CBT, and other two multiple PGL cases were not detected P/LP variants. The three cases with germline variants that could be tested did not have somatic P/LP variants of the same genes. Immunohistochemical analysis showed negative SDHB signals in CBT tissues in five cases with germline P/LP variants of SDHB, SDHD, or SDHA. In addition, SDHB signals in CBT tissues were negative in four of nine cases without germline P/LP variants of SDHs. These findings suggest the involvement of unidentified molecular mechanisms affecting SDHs.


Assuntos
Tumor do Corpo Carotídeo , Paraganglioma , Humanos , Japão , Succinato Desidrogenase/genética , Paraganglioma/genética , Mutação em Linhagem Germinativa , Genômica
6.
PLoS Genet ; 16(4): e1008643, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32294086

RESUMO

Hereditary hearing loss is challenging to diagnose because of the heterogeneity of the causative genes. Further, some genes involved in hereditary hearing loss have yet to be identified. Using whole-exome analysis of three families with congenital, severe-to-profound hearing loss, we identified a missense variant of SLC12A2 in five affected members of one family showing a dominant inheritance mode, along with de novo splice-site and missense variants of SLC12A2 in two sporadic cases, as promising candidates associated with hearing loss. Furthermore, we detected another de novo missense variant of SLC12A2 in a sporadic case. SLC12A2 encodes Na+, K+, 2Cl- cotransporter (NKCC) 1 and plays critical roles in the homeostasis of K+-enriched endolymph. Slc12a2-deficient mice have congenital, profound deafness; however, no human variant of SLC12A2 has been reported as associated with hearing loss. All identified SLC12A2 variants mapped to exon 21 or its 3'-splice site. In vitro analysis indicated that the splice-site variant generates an exon 21-skipped SLC12A2 mRNA transcript expressed at much lower levels than the exon 21-included transcript in the cochlea, suggesting a tissue-specific role for the exon 21-encoded region in the carboy-terminal domain. In vitro functional analysis demonstrated that Cl- influx was significantly decreased in all SLC12A2 variants studied. Immunohistochemistry revealed that SLC12A2 is located on the plasma membrane of several types of cells in the cochlea, including the strial marginal cells, which are critical for endolymph homeostasis. Overall, this study suggests that variants affecting exon 21 of the SLC12A2 transcript are responsible for hereditary hearing loss in humans.


Assuntos
Perda Auditiva Neurossensorial/congênito , Perda Auditiva Neurossensorial/genética , Mutação , Domínios Proteicos/genética , Membro 2 da Família 12 de Carreador de Soluto/química , Membro 2 da Família 12 de Carreador de Soluto/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cloretos/metabolismo , Cóclea/metabolismo , Cóclea/patologia , Surdez/congênito , Surdez/genética , Éxons/genética , Feminino , Expressão Gênica , Células HEK293 , Humanos , Lactente , Macaca fascicularis , Masculino , Linhagem , Splicing de RNA , RNA Mensageiro/análise , RNA Mensageiro/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
7.
Cleft Palate Craniofac J ; : 10556656231188205, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37448313

RESUMO

The recognition of syndromic forms of cleft palate is important for condition-specific management. Here, we report a patient with cleft palate, congenital heart disease, intellectual disability, and café-au-lait spots who had a deletion of chromosome 15q14. The identification of the precise breakpoints using a Nanopore-based long-read sequencer showed that the deletion spanned MEIS2 and SPRED1 loci. Cleft palate and café-au-lait spots can be ascribed to MEIS2 and SPRED1, respectively. Patients with cleft palate and café-au-lait spots should be encouraged to undergo a detailed genomic evaluation, including screening for a 15q14 deletion, to enable appropriate anticipatory medico-surgical management and genetic counseling.

8.
Cancer ; 128(15): 2949-2957, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593736

RESUMO

BACKGROUND: The survival of patients with high-risk, refractory, relapsed, or metastatic solid tumors remains dismal. A poly(ADP-ribose) polymerase (PARP) inhibitor could be effective for the treatment of pediatric solid tumors with defective homologous recombination. METHODS: This open-label, multicenter phase 1 clinical trial evaluated the safety, tolerability, and efficacy of olaparib, a PARP inhibitor, in pediatric patients with refractory solid tumors to recommend a dose for Phase 2 trials. Olaparib (62.5, 125, and 187.5 mg/m2 twice daily) was administered orally every day (1 cycle = 28 days) using a standard 3 + 3 dose-escalation design. Patients aged 3-18 years with recurrent pediatric solid tumors were eligible. Pharmacokinetic and pharmacodynamic analyses were performed. RESULTS: Fifteen patients were enrolled and received olaparib monotherapy, which was well tolerated. The recommended phase 2 dose for daily administration was 187.5 mg/m2 twice daily. Pharmacokinetics were dose proportional. The area under the concentration-time curve from 0 to 12 h and the peak plasma concentration for 187.5 mg/m2 twice daily in children were comparable to previous data obtained in a 200-mg, twice-daily cohort and lower than those in the 300-mg twice-daily cohort in adults. Pharmacodynamic studies demonstrated substantial inhibition of PARP activity. Two partial responses were observed in patients with Wilms tumor and neuroblastoma. CONCLUSIONS: This report is the first clinical trial to describe the use of a PARP inhibitor as monotherapy in children. Olaparib was well tolerated, with preliminary antitumor responses observed in DNA damage response-defective pediatric tumors. LAY SUMMARY: This Phase 1 trial evaluated the efficacy and safety of olaparib in patients with refractory childhood solid tumors. Olaparib was well tolerated, achieving objective response in 2/15 patients. The DNA damage response was attenuated in nearly one-half of advanced neuroblastoma patients, demonstrating the utility of the PARP inhibitor. The results support further investigation of olaparib as a new treatment for DNA damage-response or repair-defective pediatric cancers.


Assuntos
Antineoplásicos , Neuroblastoma , Adulto , Antineoplásicos/efeitos adversos , Criança , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Ftalazinas/efeitos adversos , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Poli(ADP-Ribose) Polimerases
9.
J Hum Genet ; 67(12): 739-742, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35945270

RESUMO

In genetic testing of Mendelian diseases, it is a bioinformatics challenge to effectively prioritize disease-causing candidate genes listed from massively parallel sequencing. Tissue specificity of the gene expression levels may give a clue because it may reflect tissue-specific disease manifestation. However, considering poor correlations between mRNA and protein expression in some genes, it is not clear whether transcriptomics- or proteomics-based tissue specificity should be used to prioritize candidate genes. Therefore, we compared the efficiency of tissue-specific scores (TS scores) obtained from transcriptome and proteome data in prioritizing candidate genes for whole exome sequencing (WES) analysis of Mendelian disease patients. We show that both Protein and RNA TS scores are useful in prioritizing candidate genes in WES analysis, although diseases like coagulopathies get more benefit from Protein TS score. This study may provide useful evidence in developing new methods to effectively identify novel disease-causing genes.


Assuntos
Exoma , Testes Genéticos , Humanos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Expressão Gênica
10.
Am J Med Genet A ; 188(8): 2472-2478, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567499

RESUMO

When a de novo balanced reciprocal translocation is identified in patients with multiple congenital abnormalities, attempts are often made to infer the relationship between the phenotype of the patient and genes in the proximity of the breakpoint. Here, we report a patient with intellectual disability, atrial septal defect, syndactyly, and cleft lip and palate who had an "apparently balanced" de novo reciprocal translocation t(4:18)(q31;q11.2) as well as a 7-Mb cryptic deletion spanning the HOXD cluster on chromosome 2q31 that was unrelated to the reciprocal translocation. Further analysis using a nanopore long-read sequencer showed complex rearrangements on both derivative chromosomes 4 and 18 and the deleted chromosome 2. First, the TLL1 locus, which is associated with atrial septal defect, was disrupted by the rearrangement involving chromosome 4. Second, the deleted interval at 2q31 included the entire HOXD cluster, the deletion of which is known to cause toe syndactyly, and the DLX1 and DLX2 loci, which are responsible for cleft lip and palate. Among the haplo-sensitive genes within the deleted interval on 2q31, only the RAPGEF4 gene is known to be associated with an autistic phenotype. Hence, most of the clinical features of the patient could be ascribed to specific genomic rearrangements. We have shown the effectiveness of long-read sequencing in defining, in detail, the likely effects of an apparently balanced translocation and cryptic deletion. The results of the present analysis suggest the possibility of phenotypic prediction through a detailed analysis of structural abnormalities, including balanced translocations and deletions.


Assuntos
Fenda Labial , Fissura Palatina , Comunicação Interatrial , Sindactilia , Fenda Labial/genética , Fissura Palatina/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Comunicação Interatrial/diagnóstico , Comunicação Interatrial/genética , Humanos , Sindactilia/genética , Metaloproteases Semelhantes a Toloide/genética , Translocação Genética
11.
Am J Med Genet A ; 188(2): 446-453, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652060

RESUMO

Menke-Hennekam syndrome-1 (MKHK1) is a congenital disorder caused by the heterozygous variants in exon 30 or 31 of CREBBP (CREB binding protein) gene mapped on 16p13.3. It is characterized by psychomotor delay, variable impairment of intellectual disability (ID), feeding difficulty, autistic behavior, hearing impairment, short stature, microcephaly, and facial dysmorphisms. The CREBBP loss-of-function variants cause Rubinstein-Taybi syndrome-1 (RSTS1). The function of CREBBP leading to MKHK1 has not been clarified so far, and the phenotype of MKHK1 significantly differs from that of RSTS1. We examined six patients with de novo pathogenic variants affecting the last exon of CREBBP, and they shared the clinical features of MKHK1. This study revealed that one frameshift and three nonsense variants of CREBBP cause MKHK1, and inferred that the nonsense variants of the last exon could further help in the elucidation of the etiology of MKHK1.


Assuntos
Síndrome de Rubinstein-Taybi , Proteína de Ligação a CREB/genética , Éxons/genética , Estudos de Associação Genética , Humanos , Japão , Fenótipo , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/patologia
12.
BMC Neurol ; 22(1): 20, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012485

RESUMO

BACKGROUND: Pontocerebellar hypoplasia (PCH) is increasingly known as a degenerative disease rather than simple "hypoplasia". At least 21 disease-causing genes have been identified for PCH so far. Because PCH is very heterogenous, prognostic prediction based solely on clinical or radiologic findings is not feasible. CASE PRESENTATION: Here, we report two siblings who had a fulminant neonatal course. The documentation of pontocerebellar hypoplasia by postmortem brain CT imaging in one of the siblings and a subsequent complex and comprehensive whole genome analysis established that both siblings had bi-allelic compound heterozygous variants (a splicing variant and a deletion) in the SLC25A46 gene which encodes a solute carrier protein essential for mitochondrial function. Long-read whole genome sequencing was required to confirm the presence of the deletion. The fulminant courses suggest that SLC25A46-related PCH is an acutely progressive degenerative condition starting in utero, rather than a simple static hypoplasia. CONCLUSION: The genomic analysis was instrumental and essential to solving the enigma of the unexplained neonatal deaths of these two siblings and to provide accurate genetic counseling.


Assuntos
Doenças Cerebelares , Proteínas Mitocondriais , Proteínas de Transporte de Fosfato , Irmãos , Doenças Cerebelares/diagnóstico , Doenças Cerebelares/genética , Evolução Fatal , Genômica , Humanos , Recém-Nascido , Proteínas Mitocondriais/genética , Mutação , Proteínas de Transporte de Fosfato/genética , Tomografia Computadorizada por Raios X
13.
Neurol Sci ; 43(4): 2765-2774, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34585293

RESUMO

Aminoacyl tRNA synthetases (ARSs) are highly conserved enzymes that link amino acids to their cognate tRNAs. Thirty-seven ARSs are known and their deficiencies cause various genetic disorders. Variants in some ARSs are associated with the autosomal dominant inherited form of axonal neuropathy, including Charcot-Marie-Tooth (CMT) disease. Variants of genes encoding ARSs often cause disorders in an autosomal recessive fashion. The clinical features of cytosolic ARS deficiencies are more variable, including systemic features. Deficiencies of ARSs localized in the mitochondria are often associated with neurological disorders including Leigh and early-onset epileptic syndromes. Whole exome sequencing (WES) is an efficient way to identify the genes causing various symptoms in patients. We identified 4 pedigrees with novel compound heterozygous variants in ARS genes (WARS1, MARS1, AARS2, and PARS2) by WES. Some unique manifestations were noted. The number of patients with ARSs has been increasing since the application of WES. Our findings broaden the known genetic and clinical spectrum associated with ARS variants.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Doença de Charcot-Marie-Tooth/genética , Humanos , Mitocôndrias , Mutação , Linhagem , Sequenciamento do Exoma
14.
Br J Cancer ; 125(11): 1533-1543, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611307

RESUMO

BACKGROUND: Cabozantinib is an oral tyrosine kinase inhibitor in renal cell carcinoma (RCC), whose targets include oncogenic AXL and unique ligand GAS6. Critical gaps in basic knowledge need to be addressed to devise an exclusive biomarker and candidate when targeting the AXL/GAS6 axis. METHODS: To clarify the effects of the AXL/GAS6 axis on RCC, we herein performed a large-scale immunogenomic analysis and single-cell counts including various metastatic organs and histological subtypes of RCC. We further applied genome-wide mutation analyses and methylation arrays. RESULTS: Varying patterns of AXL and GAS6 expression were observed throughout primary RCC tumours and metastases. Scoring individual AXL/GAS6 levels in the tumour centre and invasive margin, namely, the AXL/GAS6 score, showed a good ability to predict the prognosis of clear cell RCC. Metastasis- and histological subtype-specific differences in the AXL/GAS6 score existed since lung metastasis and the papillary subtype were weakly related to the AXL/GAS6 axis. Cell-by-cell immunohistological assessments clarified an immunosuppressive environment in tumours with high AXL/GAS6 scores. Genomic alterations in the PI3K-mTOR pathway and DNA methylation profiling revealed distinct differences with the AXL/GAS6 score in ccRCC. CONCLUSION: The AXL/GAS6 scoring system could predict the outcome of prognosis and work as a robust biomarker for the immunogenomic state in RCC.


Assuntos
Carcinoma de Células Renais/genética , Imunogenética/métodos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Humanos , Pessoa de Meia-Idade , Prognóstico , Receptor Tirosina Quinase Axl
15.
J Hum Genet ; 66(5): 491-498, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33130828

RESUMO

CUL3 forms Cullin-Ring ubiquitin ligases (CRL) with Ring-box protein and BTB-adaptor proteins. A variety of BTB-adaptor proteins have been reported to interact with the N-terminus of CUL3, which makes it possible to recognize various substrates for degradation. Regarding the association of CUL3 with neurodevelopmental disorders, a recent study reported three patients with global developmental delay, who carried de novo variants in CUL3. Here, we describe a novel de novo CUL3 variant (c.158G > A, p.Ser53Asn) identified in a patient with global developmental delay, who presented some novel dysmorphic features, including macrocephaly, characteristic facial features, and cutis marmorata. Immunoprecipitation and immunoblot analyses identified significantly weaker binding ability to some BTB proteins in CUL3-S53N compared to wild-type. Interestingly, label-free quantification proteomics analysis of samples immunoprecipitated by CUL3-S53N showed a significantly decreased interaction with some BTB proteins, while almost equal interaction or significantly increased interaction was observed with other BTB proteins. The binding between CUL3 and BTB proteins is essential for CRL substrate recognition, and alteration of their interaction is thought to result in the quantitative alteration in substrate proteins. It is possible that the difference of dysmorphic features between the present case and previously reported cases is caused by the distinctive effect of each CUL3 variant on substrate proteins. The clinical information of the present case will expand the picture of CUL3-related global developmental disorders, and subsequent cell biological analysis of the novel mutation will provide insight into the underlying molecular mechanism of how CUL3 pathogenic variants cause neurological disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Domínio BTB-POZ , Proteínas Culina/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Mutação Puntual , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Culina/metabolismo , Face/anormalidades , Estudos de Associação Genética , Heterogeneidade Genética , Células HEK293 , Heterozigoto , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Megalencefalia/genética , Fenótipo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo , Dermatopatias Vasculares/genética , Sequenciamento do Exoma
16.
Neurol Sci ; 42(7): 2975-2978, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33704598

RESUMO

BACKGROUND: Mutations of theADCY5 have been identified in patients with familial dyskinesia, early-onsetautosomal dominant chorea and dystonia, and benign hereditary chorea. Most ofthe ADCY5 mutations are de novo or transmitted in an autosomal dominantfashion. Only two pedigrees are known to show autosomal recessive inheritance. OBJECTIVES: We report twosiblings with severe ID, dystonic movement, and growth failure with unknownetiology. METHODS: We planned a proband-parentapproach using whole exome sequencing. RESULTS: Homozygous mutationin exon 21 of the ADCY5 (p.R1238W) was identified in the siblings. Althoughtheir parents were heterozygous for the mutation, they were free from clinicalmanifestations. CONCLUSIONS: Our results furtherexpand the phenotype/genotype correlations of the ADCY5-related disorders.Mutations of ADCY5 should be considered in pediatric patients with ID andinvoluntary movement.


Assuntos
Distúrbios Distônicos , Deficiência Intelectual , Transtornos dos Movimentos , Adenilil Ciclases/genética , Criança , Humanos , Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Mutação/genética
17.
Int J Cancer ; 146(9): 2488-2497, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32020592

RESUMO

Metastasis is a major cause of cancer-related mortality, and it is essential to understand how metastasis occurs in order to overcome it. One relevant question is the origin of a metastatic tumor cell population. Although the hypothesis of a single-cell origin for metastasis from a primary tumor has long been prevalent, several recent studies using mouse models have supported a multicellular origin of metastasis. Human bulk whole-exome sequencing (WES) studies also have demonstrated a multiple "clonal" origin of metastasis, with different mutational compositions. Specifically, there has not yet been strong research to determine how many founder cells colonize a metastatic tumor. To address this question, under the metastatic model of "single bottleneck followed by rapid growth," we developed a method to quantify the "founder cell population size" in a metastasis using paired WES data from primary and metachronous metastatic tumors. Simulation studies demonstrated the proposed method gives unbiased results with sufficient accuracy in the range of realistic settings. Applying the proposed method to real WES data from four colorectal cancer patients, all samples supported a multicellular origin of metastasis and the founder size was quantified, ranging from 3 to 17 cells. Such a wide-range of founder sizes estimated by the proposed method suggests that there are large variations in genetic similarity between primary and metastatic tumors in the same subjects, which may explain the observed (dis)similarity of drug responses between tumors.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Variações do Número de Cópias de DNA , Sequenciamento do Exoma/métodos , Exoma/genética , Mutação , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Prognóstico
18.
J Med Genet ; 56(6): 388-395, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30573562

RESUMO

BACKGROUND: In this study, we aimed to identify the gene abnormality responsible for pathogenicity in an individual with an undiagnosed neurodevelopmental disorder with megalencephaly, ventriculomegaly, hypoplastic corpus callosum, intellectual disability, polydactyly and neuroblastoma. We then explored the underlying molecular mechanism. METHODS: Trio-based, whole-exome sequencing was performed to identify disease-causing gene mutation. Biochemical and cell biological analyses were carried out to elucidate the pathophysiological significance of the identified gene mutation. RESULTS: We identified a heterozygous missense mutation (c.173C>T; p.Thr58Met) in the MYCN gene, at the Thr58 phosphorylation site essential for ubiquitination and subsequent MYCN degradation. The mutant MYCN (MYCN-T58M) was non-phosphorylatable at Thr58 and subsequently accumulated in cells and appeared to induce CCND1 and CCND2 expression in neuronal progenitor and stem cells in vitro. Overexpression of Mycn mimicking the p.Thr58Met mutation also promoted neuronal cell proliferation, and affected neuronal cell migration during corticogenesis in mouse embryos. CONCLUSIONS: We identified a de novo c.173C>T mutation in MYCN which leads to stabilisation and accumulation of the MYCN protein, leading to prolonged CCND1 and CCND2 expression. This may promote neurogenesis in the developing cerebral cortex, leading to megalencephaly. While loss-of-function mutations in MYCN are known to cause Feingold syndrome, this is the first report of a germline gain-of-function mutation in MYCN identified in a patient with a novel megalencephaly syndrome similar to, but distinct from, CCND2-related megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The data obtained here provide new insight into the critical role of MYCN in brain development, as well as the consequences of MYCN defects.


Assuntos
Mutação com Ganho de Função , Estudos de Associação Genética , Predisposição Genética para Doença , Megalencefalia/diagnóstico , Megalencefalia/genética , Proteína Proto-Oncogênica N-Myc/genética , Adolescente , Alelos , Animais , Encéfalo/anormalidades , Análise Mutacional de DNA , Modelos Animais de Doenças , Fácies , Genótipo , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Linhagem , Fenótipo , Radiografia , Síndrome , Sequenciamento do Exoma
19.
J Hum Genet ; 64(7): 701-702, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31028281

RESUMO

Since the publication of this article, it has been brought to our attention, that the identified mutation (NM_015277: c.2617 G > A; p.Glu873Lys) is identical with the mutation (NM_001144967: c.2677 G > A; p.Glu893Lys) reported by Broix et al (Nature Genetics 48, 1349-1358, 2016 https://doi.org/10.1038/ng.3676 ). Therefore the mutation is not novel but recurrent. Accordingly, the word "novel" should be deleted throughout the article including the title. Thus, the title should read "A missense mutation in the HECT domain of NEDD4L identified in a girl with periventricular nodular heterotopia, polymicrogyria, and cleft palate."

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA