Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 17(5): e1009292, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970916

RESUMO

The plastochron, the time interval between the formation of two successive leaves, is an important determinant of plant architecture. We genetically and phenotypically investigated many-noded dwarf (mnd) mutants in barley. The mnd mutants exhibited a shortened plastochron and a decreased leaf blade length, and resembled previously reported plastochron1 (pla1), pla2, and pla3 mutants in rice. In addition, the maturation of mnd leaves was accelerated, similar to pla mutants in rice. Several barley mnd alleles were derived from three genes-MND1, MND4, and MND8. Although MND4 coincided with a cytochrome P450 family gene that is a homolog of rice PLA1, we clarified that MND1 and MND8 encode an N-acetyltransferase-like protein and a MATE transporter-family protein, which are respectively orthologs of rice GW6a and maize BIGE1 and unrelated to PLA2 or PLA3. Expression analyses of the three MND genes revealed that MND1 and MND4 were expressed in limited regions of the shoot apical meristem and leaf primordia, but MND8 did not exhibit a specific expression pattern around the shoot apex. In addition, the expression levels of the three genes were interdependent among the various mutant backgrounds. Genetic analyses using the double mutants mnd4mnd8 and mnd1mnd8 indicated that MND1 and MND4 regulate the plastochron independently of MND8, suggesting that the plastochron in barley is controlled by multiple genetic pathways involving MND1, MND4, and MND8. Correlation analysis between leaf number and leaf blade length indicated that both traits exhibited a strong negative association among different genetic backgrounds but not in the same genetic background. We propose that MND genes function in the regulation of the plastochron and leaf growth and revealed conserved and diverse aspects of plastochron regulation via comparative analysis of barley and rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Alelos , Sistemas CRISPR-Cas/genética , Divisão Celular , Hordeum/citologia , Mutação , Oryza/genética , Fenótipo , Células Vegetais , Folhas de Planta/citologia , Fatores de Tempo
2.
BMC Genomics ; 22(1): 169, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750294

RESUMO

BACKGROUND: Rice leaves consist of three distinct regions along a proximal-distal axis, namely the leaf blade, sheath, and blade-sheath boundary region. Each region has a unique morphology and function, but the genetic programs underlying the development of each region are poorly understood. To fully elucidate rice leaf development and discover genes with unique functions in rice and grasses, it is crucial to explore genome-wide transcriptional profiles during the development of the three regions. RESULTS: In this study, we performed microarray analysis to profile the spatial and temporal patterns of gene expression in the rice leaf using dissected parts of leaves sampled in broad developmental stages. The dynamics in each region revealed that the transcriptomes changed dramatically throughout the progress of tissue differentiation, and those of the leaf blade and sheath differed greatly at the mature stage. Cluster analysis of expression patterns among leaf parts revealed groups of genes that may be involved in specific biological processes related to rice leaf development. Moreover, we found novel genes potentially involved in rice leaf development using a combination of transcriptome data and in situ hybridization, and analyzed their spatial expression patterns at high resolution. We successfully identified multiple genes that exhibit localized expression in tissues characteristic of rice or grass leaves. CONCLUSIONS: Although the genetic mechanisms of leaf development have been elucidated in several eudicots, direct application of that information to rice and grasses is not appropriate due to the morphological and developmental differences between them. Our analysis provides not only insights into the development of rice leaves but also expression profiles that serve as a valuable resource for gene discovery. The genes and gene clusters identified in this study may facilitate future research on the unique developmental mechanisms of rice leaves.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
3.
Nat Commun ; 14(1): 3191, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291104

RESUMO

Fertilization controls various aspects of cereal growth such as tiller number, leaf size, and panicle size. However, despite such benefits, global chemical fertilizer use must be reduced to achieve sustainable agriculture. Here, based on field transcriptome data from leaf samples collected during rice cultivation, we identify fertilizer responsive genes and focus on Os1900, a gene orthologous to Arabidopsis thaliana MAX1, which is involved in strigolactone biosynthesis. Elaborate genetic and biochemical analyses using CRISPR/Cas9 mutants reveal that Os1900 together with another MAX1-like gene, Os5100, play a critical role in controlling the conversion of carlactone into carlactonoic acid during strigolactone biosynthesis and tillering in rice. Detailed analyses of a series of Os1900 promoter deletion mutations suggest that fertilization controls tiller number in rice through transcriptional regulation of Os1900, and that a few promoter mutations alone can increase tiller numbers and grain yields even under minor-fertilizer conditions, whereas a single defective os1900 mutation does not increase tillers under normal fertilizer condition. Such Os1900 promoter mutations have potential uses in breeding programs for sustainable rice production.


Assuntos
Arabidopsis , Oryza , Oryza/metabolismo , Fertilizantes , Melhoramento Vegetal , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Grão Comestível/metabolismo , Fertilização , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA