Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Reprod ; 107(2): 605-618, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35368067

RESUMO

The litter size of mouse strains is determined by the number of oocytes naturally ovulated. Many attempts have been made to increase litter sizes by conventional superovulation regimens (e.g., using equine or human gonadotropins, eCG/hCG but had limited success because of unexpected decreases in the numbers of embryos surviving to term. Here, we examined whether rat-derived anti-inhibin monoclonal antibodies (AIMAs) could be used for this purpose. When C57BL/6 female mice were treated with an AIMA and mated, the number of healthy offspring per mouse increased by 1.4-fold (11.9 vs. 8.6 in controls). By contrast, treatment with eCG/hCG or anti-inhibin serum resulted in fewer offspring than in nontreated controls. The overall efficiency of production based on all females treated (including nonpregnant ones) was improved 2.4 times with AIMA compared with nontreated controls. The AIMA treatment was also effective in ICR mice, increasing the litter size from 15.3 to 21.2 pups. We then applied this technique to an in vivo genome-editing method (improved genome-editing via oviductal nucleic acid delivery, i-GONAD) to produce C57BL/6 mice deficient for tyrosinase. The mean litter size following i-GONAD increased from 4.8 to 7.3 after the AIMA treatment and genetic modifications were confirmed in 80/88 (91%) of the offspring. Thus, AIMA treatment is a promising method for increasing the litter size of mice and may be applied for the easy proliferation of mouse colonies as well as in vivo genetic manipulation, especially when the mouse strains are sensitive to handling.


Assuntos
Gonadotropina Coriônica , Inibinas , Animais , Anticorpos Monoclonais , Feminino , Edição de Genes , Cavalos , Humanos , Tamanho da Ninhada de Vivíparos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Gravidez , Ratos , Superovulação , Tecnologia
2.
Cells ; 9(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110989

RESUMO

Improved genome-editing via oviductal nucleic acid delivery (i-GONAD) is a technique capable of inducing genomic changes in preimplantation embryos (zygotes) present within the oviduct of a pregnant female. i-GONAD involves intraoviductal injection of a solution containing genome-editing components via a glass micropipette under a dissecting microscope, followed by in vivo electroporation using tweezer-type electrodes. i-GONAD does not involve ex vivo handling of embryos (isolation of zygotes, microinjection or electroporation of zygotes, and egg transfer of the treated embryos to the oviducts of a recipient female), which is required for in vitro genome-editing of zygotes. i-GONAD enables the generation of indels, knock-in (KI) of ~ 1 kb sequence of interest, and large deletion at a target locus. i-GONAD is usually performed on Day 0.7 of pregnancy, which corresponds to the late zygote stage. During the initial development of this technique, we performed i-GONAD on Days 1.4-1.5 (corresponding to the 2-cell stage). Theoretically, this means that at least two GONAD steps (on Day 0.7 and Day 1.4-1.5) must be performed. If this is practically demonstrated, it provides additional options for various clustered regularly interspaced palindrome repeats (CRISPR)/Caspase 9 (Cas9)-based genetic manipulations. For example, it is usually difficult to induce two independent indels at the target sites, which are located very close to each other, by simultaneous transfection of two guide RNAs and Cas9 protein. However, the sequential induction of indels at a target site may be possible when repeated i-GONAD is performed on different days. Furthermore, simultaneous introduction of two mutated lox sites (to which Cre recombinase bind) for making a floxed allele is reported to be difficult, as it often causes deletion of a sequence between the two gRNA target sites. However, differential KI of lox sites may be possible when repeated i-GONAD is performed on different days. In this study, we performed proof-of-principle experiments to demonstrate the feasibility of the proposed approach called "sequential i-GONAD (si-GONAD)."


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , Ácidos Nucleicos/metabolismo , Oviductos/metabolismo , Animais , Sequência de Bases , Dextranos/química , Éxons/genética , Feminino , Fluorescência , Edição de Genes , Mutação INDEL/genética , Íntrons/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA