Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 400(4): 619-24, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20807504

RESUMO

The development of antagonists to the α4 integrin family of cell adhesion molecules has been an active area of pharmaceutical research to treat inflammatory and autoimmune diseases. Presently being tested in human clinical trials are compounds selective for α4ß1 (VLA-4) as well as several dual antagonists that inhibit both α4ß1 and α4ß7. The value of a dual versus a selective small molecule antagonist as well as the consequences of inhibiting different affinity states of the α4 integrins have been debated in the literature. Here, we characterize TBC3486, a N,N-disubstituted amide, which represents a unique structural class of non-peptidic, small molecule VLA-4 antagonists. Using a variety of adhesion assay formats as well as flow cytometry experiments using mAbs specific for certain activation-dependent integrin epitopes we demonstrate that TBC3486 preferentially targets the high affinity conformation of α4ß1 and behaves as a ligand mimetic. The antagonist is capable of blocking integrin-dependent T-cell co-activation in vitro as well as proves to be efficacious in vivo at low doses in two animal models of allergic inflammation. These data suggest that a small molecule α4 integrin antagonist selective for α4ß1 over α4ß7 and, specifically, selective for the high affinity conformation of α4ß1 may prove to be an effective therapy for multiple inflammatory diseases in humans.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inflamação/tratamento farmacológico , Integrina alfa4beta1/antagonistas & inibidores , Tiofenos/farmacologia , Ureia/análogos & derivados , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Humanos , Hipersensibilidade/tratamento farmacológico , Integrina alfa4beta1/química , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Conformação Proteica/efeitos dos fármacos , Eosinofilia Pulmonar/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Tiofenos/uso terapêutico , Ureia/farmacologia , Ureia/uso terapêutico
2.
J Clin Invest ; 110(10): 1461-71, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12438444

RESUMO

Staphylococcus aureus (SA) is an opportunistic pathogen that affects a variety of organ systems and is responsible for many diseases worldwide. SA express an MHC class II analog protein (Map), which may potentiate SA survival by modulating host immunity. We tested this hypothesis in mice by generating Map-deficient SA (Map(-)SA) and comparing disease outcome to wild-type Map(+)SA-infected mice. Map(-)SA-infected mice presented with significantly reduced levels of arthritis, osteomyelitis, and abscess formation compared with control animals. Furthermore, Map(-)SA-infected nude mice developed arthritis and osteomyelitis to a severity similar to Map(+)SA-infected controls, suggesting that T cells can affect disease outcome following SA infection and Map may attenuate cellular immunity against SA. The capacity of Map to alter T cell function was tested more specifically in vitro and in vivo using native and recombinant forms of Map. T cells or mice treated with recombinant Map had reduced T cell proliferative responses and a significantly reduced delayed-type hypersensitivity response to challenge antigen, respectively. These data suggest a role for Map as an immunomodulatory protein that may play a role in persistent SA infections by affecting protective cellular immunity.


Assuntos
Proteínas de Bactérias/imunologia , Staphylococcus aureus/imunologia , Linfócitos T/imunologia , Adjuvantes Imunológicos/farmacologia , Transferência Adotiva , Animais , Apoptose , Artrite Infecciosa/etiologia , Artrite Infecciosa/imunologia , Artrite Infecciosa/patologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Hipersensibilidade Tardia , Imunidade Celular , Técnicas In Vitro , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Nus , Osteomielite/etiologia , Osteomielite/imunologia , Osteomielite/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade
3.
Nucleic Acids Res ; 32(14): 4411-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15316104

RESUMO

Hexitol nucleic acids (HNAs) are nuclease resistant and provide strong hybridization to RNA. However, there is relatively little information on the biological properties of HNA antisense oligonucleotides. In this study, we compared the antisense effects of a chimeric HNA 'gapmer' oligonucleotide comprising a phosphorothioate central sequence flanked by 5' and 3' HNA sequences to conventional phosphorothioate oligonucleotides and to a 2'-O-methoxyethyl (2'-O-ME) phosphorothioate 'gapmer'. The antisense oligomers each targeted a sequence bracketing the start codon of the message of MDR1, a gene involved in multi-drug resistance in cancer cells. Antisense and control oligonucleotides were delivered to MDR1-expressing cells using transfection with the cationic lipid Lipofectamine 2000. The anti-MDR1 HNA gapmer was substantially more potent than a phosphorothioate oligonucleotide of the same sequence in reducing expression of P-glycoprotein, the MDR1 gene product. HNA and 2'-O-ME gapmers displayed similar potency, but a pure HNA antisense oligonucleotide (lacking the phosphorothioate 'gap') was ineffective, indicating that RNase H activity was likely required. Treatment with anti-MDR1 HNA gapmer resulted in increased cellular accumulation of the drug surrogate Rhodamine 123 that correlated well with the reduced cell surface expression of P-glycoprotein. Thus, HNA gapmers may provide a valuable additional tool for antisense-based investigations and therapeutic approaches.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/metabolismo , Transporte Biológico/efeitos dos fármacos , Western Blotting , Linhagem Celular , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Regulação da Expressão Gênica , Camundongos , Células NIH 3T3 , Oligonucleotídeos Antissenso/metabolismo , Rodamina 123/metabolismo , Álcoois Açúcares/química , Tionucleotídeos/química
4.
Mol Immunol ; 39(12): 739-51, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12531285

RESUMO

CD98 is a cell surface protein previously characterized as a cell activation marker, an amino acid transporter, and has recently been implicated in integrin-related functions. Integrins are cell surface proteins, important for homotypic cell aggregation, cell adhesion, and coactivation of T lymphocytes. We have previously shown that the anti-CD98 mAb 80A10, when coimmobilized with anti-CD3 mAb OKT3, is able to mediate human T cell coactivation that is inhibited by anti-beta1 integrin specific mAb 18D3. These results indicated a functional association of CD98 and beta1 integrin signaling but left open the question of a physical association. We now show the induction of homotypic aggregation through CD98 among human T cells and this aggregation was inhibited by anti-beta1 integrin mAb. Therefore, CD98-dependent lymphocyte proliferation and adhesion may involve integrins. Competitive binding assays and fluorescence colocalization analysis suggested that CD98 and beta1 integrin were physically associated. Differential extraction techniques and immunoprecipitations provided the first evidence that the alpha4beta1 integrin and CD98 are specifically associated on human T lymphocytes.


Assuntos
Proteína-1 Reguladora de Fusão/metabolismo , Integrina beta1/metabolismo , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Adesão Celular , Agregação Celular , Linhagem Celular , Humanos , Ativação Linfocitária , Transdução de Sinais , Linfócitos T/citologia
5.
BMC Cell Biol ; 4: 2, 2003 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-12600279

RESUMO

BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.


Assuntos
Linfócitos T/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , ADP Ribose Transferases/metabolismo , ADP Ribose Transferases/farmacologia , Actinas/metabolismo , Adenosina Difosfato Ribose/metabolismo , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas/farmacologia , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Fibronectinas/farmacologia , Humanos , Microscopia de Vídeo/métodos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Immunol Res ; 27(1): 71-84, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12637769

RESUMO

T lymphocytes are the primary cells responsible for maintaining the immune system. There are many intricate mechanisms involved in the regulation of T cells and the integrin family of adhesive surface proteins plays a pivotal role in the control of T lymphocyte activation and functions. Integrins are heterodimeric transmembrane proteins that are not merely adhesion molecules but also function in T cell coactivation by providing a scaffold for signaling and cytoskeletal proteins that are adept at transmitting signals from the inside of the cell to the outside ("inside-out signaling") or from the outside of the cell to the inside ("outside-in signaling"). The signaling property of integrins allows for rapid responses to changes in the microenviroment of the lymphocyte. Therefore, whether the T cell needs to adhere or detach, integrins can quickly accommodate either state of the cell. Once cells are guided to sites of infection, inflammation, or antigen presentation, integrins can also participate in the initiation, maintenance, or termination of the response. This review will focus on the aspects of integrin-mediated T cell coactivation, affinity and avidity control of integrins, signaling molecules involved with integrins, association of integrins in lipid microdomains, and negative regulation of integrins.


Assuntos
Integrinas/imunologia , Linfócitos T/imunologia , Proteínas de Bactérias/imunologia , Adesão Celular/imunologia , Humanos , Ativação Linfocitária/imunologia , Microdomínios da Membrana/imunologia , Transdução de Sinais/imunologia
7.
Dev Cell ; 16(6): 856-66, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19531356

RESUMO

Xenopus oocyte death is partly controlled by the apoptotic initiator caspase-2 (C2). We reported previously that oocyte nutrient depletion activates C2 upstream of mitochondrial cytochrome c release. Conversely, nutrient-replete oocytes inhibit C2 via S135 phosphorylation catalyzed by calcium/calmodulin-dependent protein kinase II. We now show that C2 phosphorylated at S135 binds 14-3-3zeta, thus preventing C2 dephosphorylation. Moreover, we determined that S135 dephosphorylation is catalyzed by protein phosphatase-1 (PP1), which directly binds C2. Although C2 dephosphorylation is responsive to metabolism, neither PP1 activity nor binding is metabolically regulated. Rather, release of 14-3-3zeta from C2 is controlled by metabolism and allows for C2 dephosphorylation. Accordingly, a C2 mutant unable to bind 14-3-3zeta is highly susceptible to dephosphorylation. Although this mechanism was initially established in Xenopus, we now demonstrate similar control of murine C2 by phosphorylation and 14-3-3 binding in mouse eggs. These findings provide an unexpected evolutionary link between 14-3-3 and metabolism in oocyte death.


Assuntos
Proteínas 14-3-3/metabolismo , Apoptose , Caspase 2/metabolismo , Oócitos/citologia , Oócitos/enzimologia , Proteína Fosfatase 1/metabolismo , Animais , Ativação Enzimática , Feminino , Camundongos , Fosforilação , Ligação Proteica , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA