Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 32(11): 7976-7987, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35394186

RESUMO

OBJECTIVES: To develop and evaluate a deep learning-based algorithm (DLA) for automatic detection of bone metastases on CT. METHODS: This retrospective study included CT scans acquired at a single institution between 2009 and 2019. Positive scans with bone metastases and negative scans without bone metastasis were collected to train the DLA. Another 50 positive and 50 negative scans were collected separately from the training dataset and were divided into validation and test datasets at a 2:3 ratio. The clinical efficacy of the DLA was evaluated in an observer study with board-certified radiologists. Jackknife alternative free-response receiver operating characteristic analysis was used to evaluate observer performance. RESULTS: A total of 269 positive scans including 1375 bone metastases and 463 negative scans were collected for the training dataset. The number of lesions identified in the validation and test datasets was 49 and 75, respectively. The DLA achieved a sensitivity of 89.8% (44 of 49) with 0.775 false positives per case for the validation dataset and 82.7% (62 of 75) with 0.617 false positives per case for the test dataset. With the DLA, the overall performance of nine radiologists with reference to the weighted alternative free-response receiver operating characteristic figure of merit improved from 0.746 to 0.899 (p < .001). Furthermore, the mean interpretation time per case decreased from 168 to 85 s (p = .004). CONCLUSION: With the aid of the algorithm, the overall performance of radiologists in bone metastases detection improved, and the interpretation time decreased at the same time. KEY POINTS: • A deep learning-based algorithm for automatic detection of bone metastases on CT was developed. • In the observer study, overall performance of radiologists in bone metastases detection improved significantly with the aid of the algorithm. • Radiologists' interpretation time decreased at the same time.


Assuntos
Neoplasias Ósseas , Aprendizado Profundo , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Algoritmos , Tomografia Computadorizada por Raios X , Radiologistas , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário
2.
J Digit Imaging ; 33(6): 1543-1553, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33025166

RESUMO

Temporal subtraction (TS) technique calculates a subtraction image between a pair of registered images acquired from the same patient at different times. Previous studies have shown that TS is effective for visualizing pathological changes over time; therefore, TS should be a useful tool for radiologists. However, artifacts caused by partial volume effects degrade the quality of thick-slice subtraction images, even with accurate image registration. Here, we propose a subtraction method for reducing artifacts in thick-slice images and discuss its implementation in high-speed processing. The proposed method is based on voxel matching, which reduces artifacts by considering gaps in discretized positions of two images in subtraction calculations. There are two different features between the proposed method and conventional voxel matching: (1) the size of a searching region to reduce artifacts is determined based on discretized position gaps between images and (2) the searching region is set on both images for symmetrical subtraction. The proposed method is implemented by adopting an accelerated subtraction calculation method that exploit the nature of liner interpolation for calculating the signal value at a point among discretized positions. We quantitatively evaluated the proposed method using synthetic data and qualitatively using clinical data interpreted by radiologists. The evaluation showed that the proposed method was superior to conventional methods. Moreover, the processing speed using the proposed method was almost unchanged from that of the conventional methods. The results indicate that the proposed method can improve the quality of subtraction images acquired from thick-slice images.


Assuntos
Tomografia Computadorizada por Raios X , Algoritmos , Artefatos , Humanos , Radiologistas , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA