Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Dev Biol ; 397(1): 1-17, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25300581

RESUMO

The cerebellum is involved in some forms of motor coordination and motor learning. Here we isolated transgenic (Tg) zebrafish lines that express a modified version of Gal4-VP16 (GFF) in the cerebellar neural circuits: granule, Purkinje, or eurydendroid cells, Bergmann glia, or the neurons in the inferior olive nuclei (IO) which send climbing fibers to Purkinje cells, with the transposon Tol2 system. By combining GFF lines with Tg lines carrying a reporter gene located downstream of Gal4 binding sequences (upstream activating sequence: UAS), we investigated the anatomy and developmental processes of the cerebellar neural circuitry. Combining an IO-specific Gal4 line with a UAS reporter line expressing the photoconvertible fluorescent protein Kaede demonstrated the contralateral projections of climbing fibers. Combining a granule cell-specific Gal4 line with a UAS reporter line expressing wheat germ agglutinin (WGA) confirmed direct and/or indirect connections of granule cells with Purkinje cells, eurydendroid cells, and IO neurons in zebrafish. Time-lapse analysis of a granule cell-specific Gal4 line revealed initial random movements and ventral migration of granule cell nuclei. Transgenesis of a reporter gene with another transposon Tol1 system visualized neuronal structure at a single cell resolution. Our findings indicate the usefulness of these zebrafish Gal4 Tg lines for studying the development and function of cerebellar neural circuits.


Assuntos
Cerebelo/embriologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Movimento Celular , Cerebelo/fisiologia , Elementos de DNA Transponíveis , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Técnicas Genéticas , Proteínas de Fluorescência Verde/metabolismo , Vias Neurais , Neurônios/fisiologia , Células de Purkinje/citologia , Sinapses , Transgenes , Peixe-Zebra/embriologia , Peixe-Zebra/genética
2.
J Neurosci ; 33(16): 6905-16, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595749

RESUMO

Olfactory glomeruli are innervated with great precision by the axons of different olfactory sensory neuron types and act as functional units in odor information processing. Approximately 140 glomeruli are present in each olfactory bulb of adult zebrafish; these units consist of either highly stereotypic large glomeruli or smaller anatomically indistinguishable glomeruli. In the present study, we investigated developmental differences among these types of glomeruli. We observed that 10 large and individually identifiable glomeruli already developed before hatching, at 72 h after fertilization, in configurations that resembled their mature organization. However, the cross-sectional area of these glomeruli increased throughout larval development, and they eventually comprised the largest units in postlarval olfactory bulbs. In contrast, small and anatomically indistinguishable glomeruli formed only after hatching, apparently by segregating from five larger precursors that were identifiable during embryonic development. The differentiation of these small glomeruli proceeded with conspicuous variation in number and arrangement, both among larvae and between olfactory bulbs of the same individuals. To determine factors that might contribute to this variability, we investigated the effects of olfactory enrichment on the development of amino acid-responsive lateral glomeruli, which include both large and small units. Larvae reared in an amino acid-enriched environment had normal large lateral glomeruli, but the small lateral glomeruli were more numerous and displayed reduced cross-sectional areas compared with glomeruli in control animals. Our results suggest that large and small glomeruli mature via distinct developmental processes that may be differentially influenced by sensory experience.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Rede Nervosa/fisiologia , Bulbo Olfatório , Neurônios Receptores Olfatórios/fisiologia , Aminoácidos/farmacologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemocianinas/metabolismo , Larva , Proteínas de Membrana/metabolismo , Microscopia Confocal , Rede Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Bulbo Olfatório/citologia , Bulbo Olfatório/embriologia , Bulbo Olfatório/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
J Comp Neurol ; 532(6): e25619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831653

RESUMO

Zebrafish is a useful model organism in neuroscience; however, its gene expression atlas in the adult brain is not well developed. In the present study, we examined the expression of 38 neuropeptides, comparing with GABAergic and glutamatergic neuron marker genes in the adult zebrafish brain by comprehensive in situ hybridization. The results are summarized as an expression atlas in 19 coronal planes of the forebrain. Furthermore, the scanned data of all brain sections were made publicly available in the Adult Zebrafish Brain Gene Expression Database (https://ssbd.riken.jp/azebex/). Based on these data, we performed detailed comparative neuroanatomical analyses of the hypothalamus and found that several regions previously described as one nucleus in the reference zebrafish brain atlas contain two or more subregions with significantly different neuropeptide/neurotransmitter expression profiles. Subsequently, we compared the expression data in zebrafish telencephalon and hypothalamus obtained in this study with those in mice, by performing a cluster analysis. As a result, several nuclei in zebrafish and mice were clustered in close vicinity. The present expression atlas, database, and anatomical findings will contribute to future neuroscience research using zebrafish.


Assuntos
Neuropeptídeos , Prosencéfalo , Peixe-Zebra , Animais , Peixe-Zebra/anatomia & histologia , Prosencéfalo/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Atlas como Assunto , Expressão Gênica , Bases de Dados Genéticas , Camundongos
4.
Curr Biol ; 34(7): 1377-1389.e7, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38423017

RESUMO

Escaping from danger is one of the most fundamental survival behaviors for animals. Most freshwater fishes display olfactory alarm reactions in which an injured fish releases putative alarm substances from the skin to notify its shoaling company about the presence of danger. Here, we identified two small compounds in zebrafish skin extract, designated as ostariopterin and daniol sulfate. Ostariopterin is a pterin derivative commonly produced in many freshwater fishes belonging to the Ostariophysi superorder. Daniol sulfate is a novel sulfated bile alcohol specifically present in the Danio species, including zebrafish. Ostariopterin and daniol sulfate activate distinct glomeruli in the olfactory bulb. Zebrafish display robust alarm reactions, composed of darting, freezing, and bottom dwelling, only when they are concomitantly stimulated with ostariopterin and daniol sulfate. These results demonstrate that the fish alarm reaction is driven through a coincidence detection mechanism of the two compounds along the olfactory neural circuitry.


Assuntos
Cyprinidae , Perciformes , Animais , Peixe-Zebra/fisiologia , Olfato , Bulbo Olfatório , Sulfatos
5.
Proc Natl Acad Sci U S A ; 106(24): 9884-9, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19497864

RESUMO

In fish, amino acids are food-related important olfactory cues to elicit an attractive response. However, the neural circuit underlying this olfactory behavior is not fully elucidated. In the present study, we applied the Tol2 transposon-mediated gene trap method to dissect the zebrafish olfactory system genetically. Four zebrafish lines (SAGFF27A, SAGFF91B, SAGFF179A, and SAGFF228C) were established in which the modified transcription activator Gal4FF was expressed in distinct subsets of olfactory sensory neurons (OSNs). The OSNs in individual lines projected axons to partially overlapping but mostly different glomeruli in the olfactory bulb (OB). In SAGFF27A, Gal4FF was expressed predominantly in microvillous OSNs innervating the lateral glomerular cluster that corresponded to the amino acid-responsive region in the OB. To clarify the olfactory neural pathway mediating the feeding behavior, we genetically expressed tetanus neurotoxin in the Gal4FF lines to block synaptic transmission in distinct populations of glomeruli and examined their behavioral response to amino acids. The attractive response to amino acids was abolished only in SAGFF27A fish carrying the tetanus neurotoxin transgene. These findings clearly demonstrate the functional significance of the microvillous OSNs innervating the lateral glomerular cluster in the amino acid-mediated feeding behavior of zebrafish. Thus, the integrated approach combining genetic, neuroanatomical, and behavioral methods enables us to elucidate the neural circuit mechanism underlying various olfactory behaviors in adult zebrafish.


Assuntos
Aminoácidos/metabolismo , Elementos de DNA Transponíveis , Condutos Olfatórios , Peixe-Zebra/fisiologia , Animais , Imuno-Histoquímica , Peixe-Zebra/genética
6.
J Neurosci ; 29(15): 4756-67, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19369545

RESUMO

In the vertebrate olfactory system, odor information is represented as a topographic map in the olfactory bulb (OB). However, it remains unknown how this odor map is transferred from the OB to higher olfactory centers. Using genetic labeling techniques in zebrafish, we found that the OB output neurons, mitral cells (MCs), are heterogeneous with respect to transgene expression profiles and spatial distributions. Tracing MC axons at single-cell resolution revealed that (1) individual MCs send axons to multiple target regions in the forebrain; (2) MCs innervating the same glomerulus do not necessarily display the same axon trajectory; (3) MCs innervating distinct glomerular clusters tend to project axons to different, but partly overlapping, target regions; (4) MCs innervating the medial glomerular cluster directly and asymmetrically send axons to the right habenula. We propose that the topographic odor map in the OB is not maintained intact, but reorganized in higher olfactory centers. Moreover, our finding of asymmetric bulbo-habenular projection renders the olfactory system an attractive model for the studies of brain asymmetry and lateralized behaviors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Animais , Animais Geneticamente Modificados , Bulbo Olfatório/embriologia , Condutos Olfatórios/embriologia , Neurônios Receptores Olfatórios/embriologia , Neurônios Receptores Olfatórios/fisiologia , Peixe-Zebra
7.
J Neurosci ; 27(7): 1606-15, 2007 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-17301169

RESUMO

In both Drosophila and mice, olfactory sensory neurons (OSNs) expressing a given odorant receptor (OR) project axons to specific glomeruli in the antennal lobe or olfactory bulb (OB), developing a topographic odor map. To gain insights into the modes of OR expression and axonal projection in zebrafish, we generated a bacterial artificial chromosome transgenic line carrying an OR gene cluster in which two OR-coding sequences, OR111-7 and OR103-1, were replaced with yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP), respectively. In the transgenic embryos, YFP and CFP signals appear in small populations of OSNs at an early stage of development when OR expression is first observed. Time-lapse imaging of living embryos revealed that both YFP- and CFP-expressing OSNs project axons to the medial portion of the OB. This pattern of axonal projection is maintained in the adult transgenic fish, in which fluorescently labeled OSN axons target a topographically fixed cluster of glomeruli in the medial OB. Because the OR-coding sequences were replaced with fluorescent reporter genes, we examined which OR genes are expressed in YFP/CFP-expressing OSNs and found that the OR choice is mostly restricted to OR members within the same subfamily of the cluster. Furthermore, we found that the one receptor-one neuron rule is not always applicable to zebrafish OSNs and that multiple receptors-one neuron is true for a subpopulation of OSNs in both wild-type and transgenic fish. These data demonstrate two distinct modes of OR expression and suggest a model of the hierarchical regulation of OR gene choice and subsequent axonal projection in the zebrafish olfactory system.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Condutos Olfatórios/citologia , Neurônios Receptores Olfatórios/citologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Fatores Etários , Animais , Animais Geneticamente Modificados , Cromossomos Artificiais Bacterianos/fisiologia , Embrião não Mamífero , Imuno-Histoquímica/métodos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Peixe-Zebra
9.
Curr Biol ; 27(10): 1437-1447.e4, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28502661

RESUMO

Nucleotides released from food sources into environmental water are supposed to act as feeding cues for many fish species. However, it remains unknown how fish can sensitively detect those nucleotides. Here we discover a novel olfactory mechanism for ATP sensing in zebrafish. Upon entering into the nostril, ATP is efficiently converted into adenosine through enzymatic reactions of two ecto-nucleotidases expressed in the olfactory epithelium. Adenosine subsequently activates a small population of olfactory sensory neurons expressing a novel adenosine receptor A2c that is unique to fishes and amphibians. The information is then transmitted to a single glomerulus in the olfactory bulb and further to four regions in higher olfactory centers. These results provide conclusive evidence for a sophisticated enzyme-linked receptor mechanism underlying detection of ATP as a food-derived attractive odorant linking to foraging behavior that is crucial and common to aquatic lower vertebrates.


Assuntos
Trifosfato de Adenosina/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Peixe-Zebra/fisiologia , Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Comportamento Animal , Cálcio/metabolismo , Nariz/fisiologia , Mucosa Olfatória/citologia , Mucosa Olfatória/fisiologia , Neurônios Receptores Olfatórios/citologia , Filogenia , Receptores Purinérgicos P1/metabolismo
10.
Neuron ; 95(1): 123-137.e8, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28648498

RESUMO

In mice, various instinctive behaviors can be triggered by olfactory input. Despite growing knowledge of the brain regions involved in such behaviors, the organization of the neural circuits that convert olfactory input into stereotyped behavioral output remains poorly understood. Here, we mapped the neural circuit responsible for enhancing sexual receptivity of female mice by a male pheromone, exocrine gland-secreting peptide 1 (ESP1). We revealed specific neural types and pathways by which ESP1 information is conveyed from the peripheral receptive organ to the motor-regulating midbrain via the amygdala-hypothalamus axis. In the medial amygdala, a specific type of projection neurons gated ESP1 signals to the ventromedial hypothalamus (VMH) in a sex-dependent manner. In the dorsal VMH, which has been associated with defensive behaviors, a selective neural subpopulation discriminately mediated ESP1 information from a predator cue. Together, our data illuminate a labeled-line organization for controlling pheromone-mediated sexual behavioral output in female mice.


Assuntos
Tonsila do Cerebelo/metabolismo , Hipotálamo/metabolismo , Mesencéfalo/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Sinais (Psicologia) , Feminino , Hipotálamo/citologia , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Camundongos , Camundongos Transgênicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Comportamento Predatório , Caracteres Sexuais
11.
J Neurosci ; 25(20): 4889-97, 2005 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15901770

RESUMO

The olfactory epithelium of fish contains two major types of olfactory sensory neurons (OSNs) that are distinct morphologically (ciliated vs microvillous) and possibly functionally. Here, we found that these OSNs express different sets of signal transduction machineries: the ciliated OSNs express OR-type odorant receptors, cyclic nucleotide-gated channel A2 subunit, and olfactory marker protein (OMP), whereas the microvillous OSNs express V2R-type receptors and transient receptor potential channel C2 (TRPC2). To visualize patterns of axonal projection from the two types of OSNs to the olfactory bulb (OB), we generated transgenic zebrafish in which spectrally distinct fluorescent proteins are expressed in the ciliated and microvillous OSNs under the control of OMP and TRPC2 gene promoters, respectively. An observation of whole-mount OB in adult double-transgenic zebrafish revealed that the ciliated OSNs project axons mostly to the dorsal and medial regions of the OB, whereas the microvillous OSNs project axons to the lateral region of the OB. A careful histological examination of OB sections clarified that the axons from the two distinct types of OSNs target different glomeruli in a mutually exclusive manner. This segregation is already established at very early developmental stages in zebrafish embryos. These findings clearly demonstrate the relationships among cell morphology, molecular signatures, and axonal terminations of the two distinct types of OSNs and suggest that the two segregated neural pathways are responsible for coding and processing of different types of odor information in the zebrafish olfactory system.


Assuntos
Axônios/metabolismo , Bulbo Olfatório/citologia , Mucosa Olfatória/inervação , Condutos Olfatórios/anatomia & histologia , Neurônios Receptores Olfatórios/citologia , Animais , Animais Geneticamente Modificados/metabolismo , Axônios/fisiologia , Embrião não Mamífero , Regulação Enzimológica da Expressão Gênica/fisiologia , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Proteínas Luminescentes/classificação , Proteínas Luminescentes/metabolismo , Biologia Molecular/métodos , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Tempo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Nat Neurosci ; 19(7): 897-904, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239939

RESUMO

Pheromones play vital roles for survival and reproduction in various organisms. In many fishes, prostaglandin F2α acts not only as a female reproductive hormone, facilitating ovulation and spawning, but also as a sex pheromone inducing male reproductive behaviors. Here, we unravel the molecular and neural circuit mechanisms underlying the pheromonal action of prostaglandin F2α in zebrafish. Prostaglandin F2α specifically activates two olfactory receptors with different sensitivities and expression in distinct populations of ciliated olfactory sensory neurons. Pheromone information is then transmitted to two ventromedial glomeruli in the olfactory bulb and further to four regions in higher olfactory centers. Mutant male zebrafish deficient in the high-affinity receptor exhibit loss of attractive response to prostaglandin F2α and impairment of courtship behaviors toward female fish. These findings demonstrate the functional significance and activation of selective neural circuitry for the sex pheromone prostaglandin F2α and its cognate olfactory receptor in fish reproductive behavior.


Assuntos
Bulbo Olfatório/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Receptores de Prostaglandina/metabolismo , Olfato/fisiologia , Animais , Corte , Dinoprosta/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Feromônios/metabolismo , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Peixe-Zebra
13.
Nat Commun ; 5: 3639, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24714622

RESUMO

Chemotopic odour representations in the olfactory bulb are transferred to multiple forebrain areas and translated into appropriate output responses. However, a comprehensive projection map of bulbar output neurons at single-axon resolution is lacking in vertebrates. Here we unravel a projectome of the zebrafish olfactory bulb through genetic single-neuron tracing and image registration. We show that five major target regions receive distinct modes of projections from olfactory bulb glomeruli. The central portion of posterior telencephalon receives non-selective, interspersed inputs from all glomeruli, whereas the ventral telencephalon is diffusely innervated by axons from particular glomerular clusters. The right habenula and posterior tuberculum (diencephalic nuclei) receive convergent inputs from restricted and all glomerular clusters, respectively. The bulbar recurrent projections are coarsely topographic. Thus, the primary chemotopic organization is transformed into distinct sensory representations in higher olfactory centres. These findings provide a framework to understand general principles as well as species-specific features in decoding of odour information.


Assuntos
Bulbo Olfatório/metabolismo , Animais , Axônios/metabolismo , Prosencéfalo/metabolismo , Telencéfalo/metabolismo , Peixe-Zebra
14.
Neuron ; 84(5): 1034-48, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25467985

RESUMO

Anticipation of danger at first elicits panic in animals, but later it helps them to avoid the real threat adaptively. In zebrafish, as fish experience more and more danger, neurons in the ventral habenula (vHb) showed tonic increase in the activity to the presented cue and activated serotonergic neurons in the median raphe (MR). This neuronal activity could represent the expectation of a dangerous outcome and be used for comparison with a real outcome when the fish is learning how to escape from a dangerous to a safer environment. Indeed, inhibiting synaptic transmission from vHb to MR impaired adaptive avoidance learning, while panic behavior induced by classical fear conditioning remained intact. Furthermore, artificially triggering this negative outcome expectation signal by optogenetic stimulation of vHb neurons evoked place avoidance behavior. Thus, vHb-MR circuit is essential for representing the level of expected danger and behavioral programming to adaptively avoid potential hazard.


Assuntos
Aprendizagem da Esquiva/fisiologia , Habenula/fisiologia , Vias Neurais/fisiologia , Núcleos da Rafe/fisiologia , Neurônios Serotoninérgicos/fisiologia , 5,7-Di-Hidroxitriptamina/metabolismo , Potenciais de Ação/fisiologia , Adaptação Psicológica/fisiologia , Animais , Animais Geneticamente Modificados , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Habenula/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Neurotransmissores/metabolismo , Núcleos da Rafe/citologia , Serotonina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Mech Dev ; 130(6-8): 336-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23010553

RESUMO

The olfactory system has become a popular model to study the function of neuronal circuits and the molecular and cellular mechanisms underlying the development of neurons and their connections. An excellent model to combine studies of function and development is the zebrafish because it not only permits sophisticated molecular and genetic analyses of development, but also functional measurements of neuronal activity patterns in the intact brain. This article reviews insights into the functional development of the olfactory system that have been obtained in zebrafish. The focus is on the specification of olfactory sensory neurons (OSNs), the mechanisms controlling odorant receptor expression and OSN identity, the pathfinding of OSN axons towards target glomeruli in the olfactory bulb (OB), the development of glomeruli and functional topographic maps in the OB, and the development of inhibitory interneurons in the OB.


Assuntos
Morfogênese/fisiologia , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/metabolismo , Peixe-Zebra/fisiologia , Animais , Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/embriologia , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/crescimento & desenvolvimento , Receptores Odorantes/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia
17.
Front Behav Neurosci ; 6: 23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22654744

RESUMO

We generated transgenic mice in which a trans-synaptic tracer, wheat germ agglutinin (WGA), was specifically expressed in the locus coeruleus (LC) neurons under the control of the dopamine-ß-hydroxylase (DBH) gene promoter. WGA protein was produced in more than 95% of the tyrosine hydroxylase (TH)-positive LC neurons sampled. Transynaptic transfer of WGA was most evident in CA3 neurons of the hippocampus, but appeared absent in CA1 neurons. Faint but significant WGA immunoreactivity was observed surrounding the nuclei of dentate granule cells. Putative hilar mossy cells, identified by the presence of calretinin in the ventral hippocampus, appeared uniformly positive for transynaptically transferred WGA protein. GAD67-positive interneurons in the hilar and CA3 regions tended to be WGA-positive, although a subset of them did not show WGA co-localization. The same mixed WGA uptake profile was apparent when examining co-localization with parvalbumin. The selective uptake of WGA by dentate granule cells, mossy cells, and CA3 pyramidal neurons is consistent with evidence for a large proportion of conventional synapses adjacent to LC axonal varicosities in these regions. The lack of WGA uptake in the CA1 region and its relatively sparse innervation by DBH-positive fibers suggest that a majority of the TH-positive classical synapses revealed by electron microscopy in that region may be producing dopamine. The overall pattern of WGA uptake in these transgenic mice implies a selective role for the granule cell-mossy cell-CA3 network in processing novelty or the salient environmental contingency changes signaled by LC activity.

19.
Development ; 134(13): 2459-68, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17537794

RESUMO

Positioning neurons in the right places and wiring axons to the appropriate targets are essential events for establishment of neural circuits. In the zebrafish olfactory system, precursors of olfactory sensory neurons (OSNs) assemble into a compact cluster to form the olfactory placode. Subsequently, OSNs differentiate and extend their axons to the presumptive olfactory bulb with high precision. In this study, we aim to elucidate the molecular mechanism underlying these two developmental processes. cxcr4b, encoding a chemokine receptor, is expressed in the migrating olfactory placodal precursors, and cxcl12a (SDF-1a), encoding a ligand for Cxcr4b, is expressed in the abutting anterior neural plate. The expression of cxcr4b persists in the olfactory placode at the initial phase of OSN axon pathfinding. At this time, cxcl12a is expressed along the placode-telencephalon border and at the anterior tip of the telencephalon, prefiguring the route and target of OSN axons, respectively. Interfering with Cxcl12a/Cxcr4b signaling perturbs the assembly of the olfactory placode, resulting in the appearance of ventrally displaced olfactory neurons. Moreover, OSN axons frequently fail to exit the olfactory placode and accumulate near the placode-telencephalon border in the absence of Cxcr4b-mediated signaling. These data indicate that chemokine signaling contributes to both the olfactory placode assembly and the OSN axon pathfinding in zebrafish.


Assuntos
Axônios/metabolismo , Quimiocinas CXC/metabolismo , Neurônios Aferentes/metabolismo , Condutos Olfatórios/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Quimiocina CXCL12 , Quimiocinas CXC/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação/genética , Condutos Olfatórios/citologia , Condutos Olfatórios/embriologia , Fenótipo , Receptores CXCR4/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Development ; 132(6): 1283-93, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15716341

RESUMO

Olfactory sensory neurons (OSNs) expressing a given odorant receptor project their axons to specific glomeruli, creating a topographic odor map in the olfactory bulb (OB). The mechanisms underlying axonal pathfinding of OSNs to their precise targets are not fully understood. Here, we demonstrate that Robo2/Slit signaling functions to guide nascent olfactory axons to the OB primordium in zebrafish. robo2 is transiently expressed in the olfactory placode during the initial phase of olfactory axon pathfinding. In the robo2 mutant, astray (ast), early growing olfactory axons misroute ventromedially or posteriorly, and often penetrate into the diencephalon without reaching the OB primordium. Four zebrafish Slit homologs are expressed in regions adjacent to the olfactory axon trajectory, consistent with their role as repulsive ligands for Robo2. Masking of endogenous Slit gradients by ubiquitous misexpression of Slit2 in transgenic fish causes posterior pathfinding errors that resemble the ast phenotype. We also found that the spatial arrangement of glomeruli in OB is perturbed in ast adults, suggesting an essential role for the initial olfactory axon scaffold in determining a topographic glomerular map. These data provide functional evidence for Robo2/Slit signaling in the establishment of olfactory neural circuitry in zebrafish.


Assuntos
Condutos Olfatórios/embriologia , Receptores Imunológicos/metabolismo , Peixe-Zebra/embriologia , Animais , Axônios/metabolismo , Perfilação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condutos Olfatórios/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA