Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 555: 109-114, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33813269

RESUMO

Desmin, an intermediate filament protein expressed in muscle cells, plays a key role in the integrity and regulation of the contractile system. Furthermore, the distribution of desmin in cells and its interplay with plasma and organelle membranes are crucial for cell functions; however, the fundamental properties of lipid-desmin interactions remain unknown. Using a water-in-oil method for a limited space system in vitro, we examined the distribution of desmin in three types of phospholipid droplets: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS). When fluorescent-labeled desmin was observed for 60 min after desmin assembly was initiated by adding 25 mM KCl, desmin accumulated on both the DOPE and DOPS layers; however, it did not accumulate on the DOPC layer of droplets. An increase in salt concentration did not moderate the accumulation. The initial form of either oligomer or mature filament affected the accumulation on each lipid layer. When liposomes were included in the droplets, desmin was associated with DOPE but not on DOPC liposomes. These results suggest that desmin has the potential for association with phospholipids concerning desmin form and lipid shape. The behavior and composition of living membranes may affect the distribution of desmin networks.


Assuntos
Desmina/química , Gotículas Lipídicas/química , Fosfolipídeos/química , Animais , Galinhas , Filamentos Intermediários/química , Lipossomos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química
2.
Sci Rep ; 12(1): 1060, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058513

RESUMO

The COVID-19 pandemic has created urgent demand for rapid detection of the SARS-CoV-2 coronavirus. Herein, we report highly sensitive detection of SARS-CoV-2 nucleocapsid protein (N protein) using nanoparticle-enhanced surface plasmon resonance (SPR) techniques. A crucial plasmonic role in significantly enhancing the limit of detection (LOD) is revealed for exceptionally large gold nanoparticles (AuNPs) with diameters of hundreds of nm. SPR enhanced by these large nanoparticles lowered the LOD of SARS-CoV-2 N protein to 85 fM, resulting in the highest SPR detection sensitivity ever obtained for SARS-CoV-2 N protein.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Ouro/química , Nanopartículas Metálicas/química , SARS-CoV-2/química , Ressonância de Plasmônio de Superfície , Proteínas do Nucleocapsídeo de Coronavírus/análise , Proteínas do Nucleocapsídeo de Coronavírus/química , Fosfoproteínas/análise , Fosfoproteínas/química
3.
Cytoskeleton (Hoboken) ; 76(9-10): 477-490, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31626391

RESUMO

The interplay between intermediate filaments (IFs) and other cytoskeletal components is important for the integrity and motility of cells. The impact of IF assembly on other components and cell morphology is not yet fully understood. Therefore, we examined the effects of combined desmin and actin assembly on cytoskeletal network arrangement in artificial cell-sized droplets. Fluorescently labeled desmin, with or without actin, was enclosed in droplets prepared with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) using the water-in-oil method. Protein networks were observed using fluorescence microscopy in the presence of 150 mM KCl, 20 mM imidazole-HCl (pH 7.4), 2 mM MgCl2 , and 1 mM adenosine 5'-triphosphate for both desmin and actin assembly. As desmin alone can assemble into filaments within seconds, desmin networks mainly localizing at the inner margins of the droplets were observed within 10 min after assembly initiation. Subsequently, deformations of droplets appeared. Furthermore, a portion of droplets formed desmin-rich protrusions of several micrometers. Notably, actin alone rarely formed protrusions under the same conditions. When 1,2-dioleoyl-sn-glycero-3-phosphocholine was used instead of DOPE, protrusions became less frequent. The combination of desmin and actin increased the number of deformed droplets in which the proteins were considerably colocalized. The assembly process of desmin facilitated colocalization. Atomic force microscopy failed to reveal interactions between the two filament types. These results suggest that the mechanical properties of desmin networks may influence the behavior of actin networks, as well as membrane morphology, possibly reflecting the mechanical function of desmin filaments in muscle cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Desmina/metabolismo , Filamentos Intermediários/metabolismo , Técnicas In Vitro , Gotículas Lipídicas/química , Membranas Artificiais , Microscopia de Força Atômica , Microscopia de Fluorescência , Fosfatidiletanolaminas/química , Polimerização , Fatores de Tempo
4.
Biochim Biophys Acta Proteins Proteom ; 1866(12): 1224-1231, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291898

RESUMO

Hydrolysis of the triphosphate moiety of ATP, catalyzed by myosin, induces alterations in the affinity of the myosin heads for actin filaments via conformational changes, thereby causing motility of the actomyosin complexes. To elucidate the contribution of the triphosphate group attached to adenosine, we examined the enzymatic activity of heavy meromyosin (HMM) with actin filaments for inorganic tripolyphosphate (3PP) using a Malachite green method and evaluated using fluorescence microscopy the effects of 3PP on actin filament motility on HMM-coated glass slides. In the presence of MgCl2, HMM hydrolyzed 3PP at a maximum rate of 0.016 s-1 HMM-1, which was four times lower than the hydrolysis rate of ATP. Tetrapolyphosphate (4PP) was hydrolyzed at a rate similar to that of 3PP hydrolysis. The hydrolysis rates of 3PP and 4PP were enhanced by roughly 10-fold in the presence of actin filaments. In motility assays, the presence of polyphosphates did not lead to the sliding movement of actin filaments. Moreover, in the presence of ATP at low concentrations, the sliding velocity of actin filaments decreased as the concentration of added polyphosphate increased, indicating a competitive binding of polyphosphate to myosin heads with ATP. These results suggested that the energy produced by standalone triphosphate hydrolysis did not induce the unidirectional motion of actomyosin and that the link between triphosphate and adenosine was crucial for motility.


Assuntos
Citoesqueleto de Actina/metabolismo , Subfragmentos de Miosina/metabolismo , Polifosfatos/metabolismo , Citoesqueleto de Actina/química , Biocatálise , Hidrólise , Cloreto de Magnésio/química , Microscopia de Fluorescência , Subfragmentos de Miosina/química , Polifosfatos/química , Ligação Proteica , Corantes de Rosanilina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA