Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(6): e1011337, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935810

RESUMO

Sperm heads contain not only the nucleus but also the acrosome which is a distinctive cap-like structure located anterior to the nucleus and is derived from the Golgi apparatus. The Golgi Associated RAB2 Interactors (GARINs; also known as FAM71) protein family shows predominant expression in the testis and all possess a RAB2-binding domain which confers binding affinity to RAB2, a small GTPase that is responsible for membrane transport and vesicle trafficking. Our previous study showed that GARIN1A and GARIN1B are important for acrosome biogenesis and that GARIN1B is indispensable for male fertility in mice. Here, we generated KO mice of other Garins, namely Garin2, Garin3, Garin4, Garin5a, and Garin5b (Garin2-5b). Using computer-assisted morphological analysis, we found that the loss of each Garin2-5b resulted in aberrant sperm head morphogenesis. While the fertilities of Garin2-/- and Garin4-/- males are normal, Garin5a-/- and Garin5b-/- males are subfertile, and Garin3-/- males are infertile. Further analysis revealed that Garin3-/- males exhibited abnormal acrosomal morphology, but not as severely as Garin1b-/- males; instead, the amounts of membrane proteins, particularly ADAM family proteins, decreased in Garin3 KO spermatozoa. Moreover, only Garin4 KO mice exhibit vacuoles in the sperm head. These results indicate that GARINs assure correct head morphogenesis and some members of the GARIN family function distinctively in male fertility.

2.
Proc Natl Acad Sci U S A ; 120(39): e2304409120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725640

RESUMO

Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm-specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella. Here, we report that the Tmem249-encoded transmembrane (TM) domain-containing protein, CATSPERθ is essential for the CatSper channel assembly during sperm tail formation. CATSPERθ facilitates the channel assembly by serving as a scaffold for a pore-forming subunit CATSPER4. CATSPERθ is specifically localized at the interface of a CatSper dimer and can self-interact, suggesting its potential role in CatSper dimer formation. Male mice lacking CATSPERθ are infertile because the sperm lack the entire CatSper channel from sperm flagella, rendering sperm unable to hyperactivate, regardless of their normal expression in the testis. In contrast, genetic abrogation of any of the other CatSper TM subunits results in loss of CATSPERθ protein in the spermatid cells during spermatogenesis. CATSPERθ might act as a checkpoint for the properly assembled CatSper channel complex to traffic to sperm flagella. This study provides insights into the CatSper channel assembly and elucidates the physiological role of CATSPERθ in sperm motility and male fertility.


Assuntos
Sêmen , Motilidade dos Espermatozoides , Animais , Masculino , Camundongos , Membrana Celular , Canais Iônicos , Proteínas de Membrana/genética , Proteínas de Plasma Seminal , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide , Espermatozoides
3.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714330

RESUMO

The acrosome is a cap-shaped, Golgi-derived membranous organelle that is located over the anterior of the sperm nucleus and highly conserved throughout evolution. Although morphological changes during acrosome biogenesis in spermatogenesis have been well described, the molecular mechanism underlying this process is still largely unknown. Family with sequence similarity 71, member F1 and F2 (FAM71F1 and FAM71F2) are testis-enriched proteins that contain a RAB2B-binding domain, a small GTPase involved in vesicle transport and membrane trafficking. Here, by generating mutant mice for each gene, we found that Fam71f1 is essential for male fertility. In Fam71f1-mutant mice, the acrosome was abnormally expanded at the round spermatid stage, likely because of enhanced vesicle trafficking. Mass spectrometry analysis after immunoprecipitation indicated that, in testes, FAM71F1 binds not only RAB2B, but also RAB2A. Further study suggested that FAM71F1 binds to the GTP-bound active form of RAB2A/B, but not the inactive form. These results indicate that a complex of FAM71F1 and active RAB2A/B suppresses excessive vesicle trafficking during acrosome formation.


Assuntos
Acrossomo/metabolismo , Fertilidade/fisiologia , Proteínas Nucleares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rab2 de Ligação ao GTP/metabolismo , Acrossomo/patologia , Animais , Genética , Complexo de Golgi/metabolismo , Infertilidade Masculina , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Ligação Proteica , Cabeça do Espermatozoide/metabolismo , Espermatogênese , Teratozoospermia/metabolismo , Testículo/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33536340

RESUMO

The mammalian sperm midpiece has a unique double-helical structure called the mitochondrial sheath that wraps tightly around the axoneme. Despite the remarkable organization of the mitochondrial sheath, the molecular mechanisms involved in mitochondrial sheath formation are unclear. In the process of screening testis-enriched genes for functions in mice, we identified armadillo repeat-containing 12 (ARMC12) as an essential protein for mitochondrial sheath formation. Here, we engineered Armc12-null mice, FLAG-tagged Armc12 knock-in mice, and TBC1 domain family member 21 (Tbc1d21)-null mice to define the functions of ARMC12 in mitochondrial sheath formation in vivo. We discovered that absence of ARMC12 causes abnormal mitochondrial coiling along the flagellum, resulting in reduced sperm motility and male sterility. During spermiogenesis, sperm mitochondria in Armc12-null mice cannot elongate properly at the mitochondrial interlocking step which disrupts abnormal mitochondrial coiling. ARMC12 is a mitochondrial peripheral membrane protein and functions as an adherence factor between mitochondria in cultured cells. ARMC12 in testicular germ cells interacts with mitochondrial proteins MIC60, VDAC2, and VDAC3 as well as TBC1D21 and GK2, which are required for mitochondrial sheath formation. We also observed that TBC1D21 is essential for the interaction between ARMC12 and VDAC proteins in vivo. These results indicate that ARMC12 uses integral mitochondrial membrane proteins VDAC2 and VDAC3 as scaffolds to link mitochondria and works cooperatively with TBC1D21. Thus, our studies have revealed that ARMC12 regulates spatiotemporal mitochondrial dynamics to form the mitochondrial sheath through cooperative interactions with several proteins on the sperm mitochondrial surface.


Assuntos
Proteínas do Domínio Armadillo/genética , Proteínas Ativadoras de GTPase/genética , Infertilidade Masculina/genética , Proteínas dos Microfilamentos/genética , Dinâmica Mitocondrial/genética , Animais , Axonema/genética , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/genética , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/patologia , Espermatozoides/ultraestrutura , Testículo/metabolismo , Canal de Ânion 2 Dependente de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/genética
5.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446558

RESUMO

Calcineurin is a calcium-dependent phosphatase that plays roles in a variety of biological processes including immune responses. In spermatozoa, there is a testis-enriched calcineurin composed of PPP3CC and PPP3R2 (sperm calcineurin) that is essential for sperm motility and male fertility. Because sperm calcineurin has been proposed as a target for reversible male contraceptives, identifying proteins that interact with sperm calcineurin widens the choice for developing specific inhibitors. Here, by screening the calcineurin-interacting PxIxIT consensus motif in silico and analyzing the function of candidate proteins through the generation of gene-modified mice, we discovered that SPATA33 interacts with sperm calcineurin via a PQIIIT sequence. Spata33 knockout mice exhibit reduced sperm motility because of an inflexible midpiece, leading to impaired male fertility, which phenocopies Ppp3cc and Ppp3r2 knockout mice. Further analysis reveals that sperm calcineurin disappears from the mitochondria in the Spata33 knockout testis. In addition, immunoprecipitation analysis indicates that sperm calcineurin interacts with not only SPATA33 but also the mitochondrial protein VDAC2. These results indicate that SPATA33 localizes calcineurin to the mitochondria and regulates sperm motility.


Assuntos
Calcineurina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Mitocôndrias/metabolismo , Motilidade dos Espermatozoides , Testículo/fisiologia , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Animais , Calcineurina/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Espermatogênese , Canal de Ânion 2 Dependente de Voltagem/genética
6.
Dev Biol ; 488: 104-113, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618043

RESUMO

Immunity-related GTPases (IRGs), also known as p47 GTPases, are a family of interferon-inducible proteins that play roles in immunity defense against intracellular pathogens. Although the molecular functions of IRGs have been well studied, the function of the family member, IRGC1, remains unclear. IRGC1 is unique among IRGs because its expression is not induced by interferon and it is expressed predominantly in the testis. Further, IRGC1 is well conserved in mammals unlike other IRGs. Here, we knocked out (KO) Irgc1 in mice using the CRISPR/Cas9 system and found that the fertility of Irgc1 KO males was severely impaired because of abnormal sperm motility. Further analyses with a transmission electron microscope revealed that the fibrous sheath (FS), an accessory structure of the sperm tail, was disorganized in Irgc1 KO mice. In addition, IRGC1 was detected in the sperm tail and fractionated with FS proteins. These results suggest that IRGC1 is a component of the FS and is involved in the correct formation of the FS.


Assuntos
Motilidade dos Espermatozoides , Testículo , Animais , Masculino , Camundongos , GTP Fosfo-Hidrolases/metabolismo , Interferons/metabolismo , Mamíferos , Camundongos Knockout , Proteínas/metabolismo , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
7.
Am J Hum Genet ; 107(2): 330-341, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32619401

RESUMO

Sperm malformation is a direct factor for male infertility. Multiple morphological abnormalities of the flagella (MMAF), a severe form of asthenoteratozoospermia, are characterized by immotile spermatozoa with malformed and/or absent flagella in the ejaculate. Previous studies indicated genetic heterogeneity in MMAF. To further define genetic factors underlying MMAF, we performed whole-exome sequencing in a cohort of 90 Chinese MMAF-affected men. Two cases (2.2%) were identified as carrying bi-allelic missense DNAH8 variants, variants which were either absent or rare in the control human population and were predicted to be deleterious by multiple bioinformatic tools. Re-analysis of exome data from a second cohort of 167 MMAF-affected men from France, Iran, and North Africa permitted the identification of an additional male carrying a DNAH8 homozygous frameshift variant. DNAH8 encodes a dynein axonemal heavy-chain component that is expressed preferentially in the testis. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring bi-allelic DNAH8 variants showed a highly aberrant morphology and ultrastructure of the sperm flagella. Immunofluorescence assays performed on the spermatozoa from men harboring bi-allelic DNAH8 variants revealed the absent or markedly reduced staining of DNAH8 and its associated protein DNAH17. Dnah8-knockout male mice also presented typical MMAF phenotypes and sterility. Interestingly, intracytoplasmic sperm injections using the spermatozoa from Dnah8-knockout male mice resulted in good pregnancy outcomes. Collectively, our experimental observations from humans and mice demonstrate that DNAH8 is essential for sperm flagellar formation and that bi-allelic deleterious DNAH8 variants lead to male infertility with MMAF.


Assuntos
Anormalidades Múltiplas/genética , Dineínas do Axonema/genética , Flagelos/genética , Variação Genética/genética , Infertilidade Masculina/genética , Cauda do Espermatozoide/patologia , Alelos , Animais , Estudos de Coortes , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/anormalidades , Testículo/anormalidades , Sequenciamento do Exoma/métodos
8.
PLoS Genet ; 16(1): e1008585, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961863

RESUMO

Flagella and cilia are evolutionarily conserved cellular organelles. Abnormal formation or motility of these organelles in humans causes several syndromic diseases termed ciliopathies. The central component of flagella and cilia is the axoneme that is composed of the '9+2' microtubule arrangement, dynein arms, radial spokes, and the Nexin-Dynein Regulatory Complex (N-DRC). The N-DRC is localized between doublet microtubules and has been extensively studied in the unicellular flagellate Chlamydomonas. Recently, it has been reported that TCTE1 (DRC5), a component of the N-DRC, is essential for proper sperm motility and male fertility in mice. Further, TCTE1 has been shown to interact with FBXL13 (DRC6) and DRC7; however, functional roles of FBXL13 and DRC7 in mammals have not been elucidated. Here we show that Fbxl13 and Drc7 expression are testes-enriched in mice. Although Fbxl13 knockout (KO) mice did not show any obvious phenotypes, Drc7 KO male mice were infertile due to their short immotile spermatozoa. In Drc7 KO spermatids, the axoneme is disorganized and the '9+2' microtubule arrangement was difficult to detect. Further, other N-DRC components fail to incorporate into the flagellum without DRC7. These results indicate that Drc7, but not Fbxl13, is essential for the correct assembly of the N-DRC and flagella.


Assuntos
Dineínas/metabolismo , Flagelos/genética , Infertilidade Masculina/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Espermatozoides/metabolismo , Animais , Axonema/genética , Axonema/metabolismo , Axonema/patologia , Feminino , Flagelos/metabolismo , Flagelos/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogênese , Espermatozoides/citologia , Espermatozoides/patologia
9.
PLoS Genet ; 16(8): e1008954, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32785227

RESUMO

The flagellum is essential for sperm motility and fertilization in vivo. The axoneme is the main component of the flagella, extending through its entire length. An axoneme is comprised of two central microtubules surrounded by nine doublets, the nexin-dynein regulatory complex, radial spokes, and dynein arms. Failure to properly assemble components of the axoneme in a sperm flagellum, leads to fertility alterations. To understand this process in detail, we have defined the function of an uncharacterized gene, Cfap97 domain containing 1 (Cfap97d1). This gene is evolutionarily conserved in mammals and multiple other species, including Chlamydomonas. We have used two independently generated Cfap97d1 knockout mouse models to study the gene function in vivo. Cfap97d1 is exclusively expressed in testes starting from post-natal day 20 and continuing throughout adulthood. Deletion of the Cfap97d1 gene in both mouse models leads to sperm motility defects (asthenozoospermia) and male subfertility. In vitro fertilization (IVF) of cumulus-intact oocytes with Cfap97d1 deficient sperm yielded few embryos whereas IVF with zona pellucida-free oocytes resulted in embryo numbers comparable to that of the control. Knockout spermatozoa showed abnormal motility characterized by frequent stalling in the anti-hook position. Uniquely, Cfap97d1 loss caused a phenotype associated with axonemal doublet heterogeneity linked with frequent loss of the fourth doublet in the sperm stored in the epididymis. This study demonstrates that Cfap97d1 is required for sperm flagellum ultra-structure maintenance, thereby playing a critical role in sperm function and male fertility in mice.


Assuntos
Axonema/genética , Proteínas do Citoesqueleto/genética , Dineínas/genética , Infertilidade Masculina/genética , Animais , Chlamydomonas/genética , Cílios/genética , Cílios/patologia , Fertilização in vitro , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/patologia , Testículo/crescimento & desenvolvimento , Testículo/patologia
10.
Proc Natl Acad Sci U S A ; 116(51): 26020-26028, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31776261

RESUMO

The voltage-sensing phosphatase (VSP) is a unique protein that shows voltage-dependent phosphoinositide phosphatase activity. Here we report that VSP is activated in mice sperm flagellum and generates a unique subcellular distribution pattern of PtdIns(4,5)P2 Sperm from VSP-/- mice show more Ca2+ influx upon capacitation than VSP+/- mice and abnormal circular motion. VSP-deficient sperm showed enhanced activity of Slo3, a PtdIns(4,5)P2-sensitive K+ channel, which selectively localizes to the principal piece of the flagellum and indirectly enhances Ca2+ influx. Most interestingly, freeze-fracture electron microscopy analysis indicates that normal sperm have much less PtdIns(4,5)P2 in the principal piece than in the midpiece of the flagellum, and this polarized PtdIns(4,5)P2 distribution disappeared in VSP-deficient sperm. Thus, VSP appears to optimize PtdIns(4,5)P2 distribution of the principal piece. These results imply that flagellar PtdIns(4,5)P2 distribution plays important roles in ion channel regulation as well as sperm motility.


Assuntos
Canais Iônicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Motilidade dos Espermatozoides/fisiologia , Animais , Canais de Cálcio/metabolismo , Flagelos/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Monoéster Fosfórico Hidrolases/genética , Cauda do Espermatozoide/metabolismo , Espermatozoides/metabolismo
11.
Reprod Med Biol ; 21(1): e12467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619658

RESUMO

Purpose: Tulp2 (tubby-like protein 2) is a member of the tubby protein family and expressed predominantly in mouse testis. Recently, it was reported that Tulp2 knockout (KO) mice exhibited disrupted sperm tail morphology; however, it remains to be determined how TULP2 deletion causes abnormal tail formation. Methods: The authors analyzed male fertility, sperm morphology, and motility of two Tulp2 KO mouse lines that were generated using the conventional method that utilizes homologous recombination in embryonic stem (ES) cells as well as the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system. Furthermore, the authors observed the spermatogenesis of Tulp2 KO mice in more detail using scanning and transmission electron microscopy (SEM and TEM). Results: Both mouse lines of Tulp2 KO exhibited male infertility, abnormal tail morphology, and impaired sperm motility. No overt abnormalities were found in the formation of the mitochondrial sheath in Tulp2 KO mice using the freeze-fracture method with SEM. In contrast, abnormal outer dense fiber (ODF) structure was observed in Tulp2 KO testis with TEM. Conclusions: TULP2 may play roles in the correct formation and/or maintenance of ODF, which may lead to abnormal tail morphology, impaired sperm motility, and male infertility.

12.
J Biol Chem ; 295(42): 14501-14509, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32816994

RESUMO

PGAP6, also known as TMEM8A, is a phospholipase A2 with specificity to glycosylphosphatidylinositol (GPI) and expressed on the surface of various cells. CRIPTO, a GPI-anchored co-receptor for a morphogenic factor Nodal, is a sensitive substrate of PGAP6. PGAP6-mediated shedding of CRIPTO plays a critical role in an early stage of embryogenesis. In contrast, CRYPTIC, a close family member of CRIPTO, is resistant to PGAP6. In this report, chimeras between CRIPTO and CRYPTIC and truncate mutants of PGAP6 were used to demonstrate that the Cripto-1/FRL1/Cryptic domain of CRIPTO is recognized by an N-terminal domain of PGAP6 for processing. We also report that among 56 human GPI-anchored proteins tested, only glypican 3, prostasin, SPACA4, and contactin-1, in addition to CRIPTO, are sensitive to PGAP6, indicating that PGAP6 has a narrow specificity toward various GPI-anchored proteins.


Assuntos
Glicoproteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Mutagênese , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/metabolismo , Serina Endopeptidases/metabolismo , Espermatozoides/metabolismo , Especificidade por Substrato , Testículo/metabolismo
13.
EMBO J ; 36(12): 1707-1718, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28533230

RESUMO

Alveolar macrophages (AMs) are specialized tissue-resident macrophages that orchestrate the immune responses to inhaled pathogens and maintain organ homeostasis of the lung. Dysregulation of AMs is associated with allergic inflammation and asthma. Here, we examined the role of a phosphoinositide kinase PIKfyve in AM development and function. Mice with conditionally deleted PIKfyve in macrophages have altered AM populations. PIKfyve deficiency results in a loss of AKT activation in response to GM-CSF, a cytokine critical for AM development. Upon exposure to house dust mite extract, mutant mice display severe lung inflammation and allergic asthma accompanied by infiltration of eosinophils and lymphoid cells. Moreover, they have defects in production of retinoic acid and fail to support incorporation of Foxp3+ Treg cells in the lung, resulting in exacerbation of lung inflammation. Thus, PIKfyve plays a role in preventing excessive lung inflammation through regulating AM function.


Assuntos
Asma/patologia , Hipersensibilidade/patologia , Inflamação/patologia , Macrófagos Alveolares/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Alérgenos/administração & dosagem , Animais , Técnicas de Inativação de Genes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/deficiência , Deleção de Sequência , Transdução de Sinais , Linfócitos T Reguladores/imunologia
14.
FASEB J ; 34(4): 5389-5400, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32072696

RESUMO

Kinesin is a molecular motor that moves along microtubules. Kinesin family member 9 (KIF9) is evolutionarily conserved and expressed strongly in mouse testis. In the unicellular flagellate Chlamydomonas, KLP1 (ortholog of KIF9) is localized to the central pair microtubules of the axoneme and regulates flagellar motility. In contrast, the function of KIF9 remains unclear in mammals. Here, we mutated KIF9 in mice using the CRISPR/Cas9 system. Kif9 mutated mice exhibit impaired sperm motility and subfertility. Further analysis reveals that the flagella lacking KIF9 showed an asymmetric waveform pattern, which leads to a circular motion of spermatozoa. In spermatozoa that lack the central pair protein HYDIN, KIF9 was not detected by immunofluorescence and immunoblot analysis. These results suggest that KIF9 is associated with the central pair microtubules and regulates flagellar motility in mice.


Assuntos
Fertilidade , Flagelos/fisiologia , Cinesinas/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Testículo/metabolismo , Animais , Cinesinas/genética , Masculino , Camundongos , Microtúbulos , Mutação , Espermatozoides/citologia
15.
FASEB J ; 34(12): 16224-16242, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058343

RESUMO

Importin α proteins play a central role in the transport of cargo from the cytoplasm to the nucleus. In this study, we observed that male knock-out mice for importin α4, which is encoded by the Kpna4 gene (Kpna4-/- ), were subfertile and yielded smaller litter sizes than those of wild-type (WT) males. In contrast, mice lacking the closely related importin α3 (Kpna3-/- ) were fertile. In vitro fertilization and sperm motility assays demonstrated that sperm from Kpna4-/- mice had significantly reduced quality and motility. In addition, acrosome reaction was also impaired in Kpna4-/- mice. Transmission electron microscopy revealed striking defects, including abnormal head morphology and multiple axoneme structures in the flagella of Kpna4-/- mice. A five-fold increase in the frequency of abnormalities in Kpna4-/- mice compared to WT mice indicates the functional importance of importin α4 in normal sperm development. Moreover, Nesprin-2, which is a component of the linker of nucleus and cytoskeleton complex, was expressed at lower levels in sperm from Kpna4-/- mice and was localized with abnormal axonemes, suggesting incorrect formation of the nuclear membrane-cytoskeleton structure during spermiogenesis. Proteomics analysis of Kpna4-/- testis showed significantly altered expression of proteins related to sperm formation, which provided evidence that genetic loss of importin α4 perturbed chromatin status. Collectively, these findings indicate that importin α4 is critical for establishing normal sperm morphology in mice, providing new insights into male germ cell development by highlighting the requirement of importin α4 for normal fertility.


Assuntos
Fertilidade/genética , Infertilidade Masculina/genética , Carioferinas/genética , Motilidade dos Espermatozoides/genética , Espermatozoides/anormalidades , alfa Carioferinas/genética , Reação Acrossômica/genética , Animais , Flagelos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatogênese/genética , Testículo/anormalidades
16.
J Cell Sci ; 131(19)2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30185526

RESUMO

The flagellum is an evolutionarily conserved appendage used for sensing and locomotion. Its backbone is the axoneme and a component of the axoneme is the radial spoke (RS), a protein complex implicated in flagellar motility regulation. Numerous diseases occur if the axoneme is improperly formed, such as primary ciliary dyskinesia (PCD) and infertility. Radial spoke head 6 homolog A (RSPH6A) is an ortholog of Chlamydomonas RSP6 in the RS head and is evolutionarily conserved. While some RS head proteins have been linked to PCD, little is known about RSPH6A. Here, we show that mouse RSPH6A is testis-enriched and localized in the flagellum. Rsph6a knockout (KO) male mice are infertile as a result of their short immotile spermatozoa. Observation of the KO testis indicates that the axoneme can elongate but is disrupted before accessory structures are formed. Manchette removal is also impaired in the KO testis. Further, RSPH9, another radial spoke protein, disappeared in the Rsph6a KO flagella. These data indicate that RSPH6A is essential for sperm flagellar assembly and male fertility in mice.This article has an associated First Person interview with the first author of the paper.


Assuntos
Fertilidade , Flagelos/metabolismo , Proteínas/metabolismo , Espermatozoides/metabolismo , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Sequência Conservada , Evolução Molecular , Flagelos/ultraestrutura , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Mutantes , Mitocôndrias/metabolismo , Especificidade de Órgãos , Fenótipo , Ligação Proteica , Transporte Proteico , Injeções de Esperma Intracitoplásmicas , Cauda do Espermatozoide/metabolismo , Espermatozoides/ultraestrutura , Testículo/metabolismo , Tubulina (Proteína)/metabolismo
17.
Biol Reprod ; 103(2): 235-243, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32430498

RESUMO

Spermatogenesis is a complex developmental process that involves the proliferation of diploid cells, meiotic division, and haploid differentiation. Many genes are shown to be essential for male fertility using knockout (KO) mice; however, there still remain genes to be analyzed to elucidate their molecular mechanism and their roles in spermatogenesis. Calcium- and integrin-binding protein 1 (CIB1) is a ubiquitously expressed protein that possesses three paralogs: CIB2, CIB3, and CIB4. It is reported that Cib1 KO male mice are sterile due to impaired haploid differentiation. In this study, we discovered that Cib4 is expressed strongly in mouse and human testis and begins expression during the haploid phase of spermatogenesis in mice. To analyze the function of CIB4 in vivo, we generated Cib4 KO mice using the CRISPR/Cas9 system. Cib4 KO male mice are sterile due to impaired haploid differentiation, phenocopying Cib1 KO male mice. Spermatogenic cells isolated from seminiferous tubules demonstrate an essential function of CIB4 in the formation of the apical region of the sperm head. Further analysis of CIB4 function may shed light on the etiology of male infertility caused by spermatogenesis defects, and CIB4 could be a target for male contraceptives because of its dominant expression in the testis.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Infertilidade Masculina/genética , Espermatogênese/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Haploidia , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Testículo/metabolismo
18.
Biol Reprod ; 103(2): 244-253, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32301969

RESUMO

Globozoospermia (sperm with an abnormally round head shape) and asthenozoospermia (defective sperm motility) are known causes of male infertility in human patients. Despite many studies, the molecular details of the globozoospermia etiology are still poorly understood. Serine-rich single-pass membrane protein 1 (Ssmem1) is a conserved testis-specific gene in mammals. In this study, we generated Ssmem1 knockout (KO) mice using the CRISPR/Cas9 system, demonstrated that Ssmem1 is essential for male fertility in mice, and found that SSMEM1 protein is expressed during spermatogenesis but not in mature sperm. The sterility of the Ssmem1 KO (null) mice is associated with globozoospermia and loss of sperm motility. To decipher the mechanism causing the phenotype, we analyzed testes with transmission electron microscopy and discovered that Ssmem1-disrupted spermatids have abnormal localization of Golgi at steps eight and nine of spermatid development. Immunofluorescence analysis with anti-Golgin-97 to label the trans-Golgi network, also showed delayed movement of the Golgi to the spermatid posterior region, which causes failure of sperm head shaping, disorganization of the cell organelles, and entrapped tails in the cytoplasmic droplet. In summary, SSMEM1 is crucial for intracellular Golgi movement to ensure proper spatiotemporal formation of the sperm head that is required for fertilization. These studies and the pathway in which SSMEM1 functions have implications for human male infertility and identifying potential targets for nonhormonal contraception.


Assuntos
Infertilidade Masculina/genética , Proteínas de Plasma Seminal/genética , Motilidade dos Espermatozoides/genética , Espermatogênese/genética , Teratozoospermia/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Espermatozoides/metabolismo
19.
Biol Reprod ; 102(4): 852-862, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31837139

RESUMO

The t-complex is defined as naturally occurring variants of the proximal third of mouse chromosome 17 and has been studied by mouse geneticists for decades. This region contains many genes involved in processes from embryogenesis to sperm function. One such gene, t-complex protein 11 (Tcp11), was identified as a testis-specific gene whose protein is present in elongating spermatids. Later work on Tcp11 localized TCP11 to the sperm surface and acrosome cap and implicated TCP11 as important for sperm capacitation through the cyclic AMP/Protein Kinase A pathway. Here, we show that TCP11 is cytoplasmically localized to elongating spermatids and absent from sperm. In the absence of Tcp11, male mice have severely reduced fertility due to a significant decrease in progressively motile sperm; however, Tcp11-null sperm continues to undergo tyrosine phosphorylation, a hallmark of capacitation. Interestingly, null sperm displays reduced PKA activity, consistent with previous reports. Our work demonstrates that TCP11 functions in elongated spermatids to confer proper motility in mature sperm.


Assuntos
Proteínas de Membrana/metabolismo , Capacitação Espermática/genética , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Acrossomo/metabolismo , Animais , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação , Espermátides/metabolismo , Testículo/metabolismo
20.
Biol Reprod ; 103(2): 183-194, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32588039

RESUMO

Developing a safe and effective male contraceptive remains a challenge in the field of medical science. Molecules that selectively target the male reproductive tract and whose targets are indispensable for male reproductive function serve among the best candidates for a novel non-hormonal male contraceptive method. To determine the function of these genes in vivo, mutant mice carrying disrupted testis- or epididymis-enriched genes were generated by zygote microinjection or electroporation of the CRISPR/Cas9 components. Male fecundity was determined by consecutively pairing knockout males with wild-type females and comparing the fecundity of wild-type controls. Phenotypic analyses of testis appearance and weight, testis and epididymis histology, and sperm movement were further carried out to examine any potential spermatogenic or sperm maturation defect in mutant males. In this study, we uncovered 13 testis- or epididymis-enriched evolutionarily conserved genes that are individually dispensable for male fertility in mice. Owing to their dispensable nature, it is not feasible to use these targets for the development of a male contraceptive.


Assuntos
Epididimo/metabolismo , Reprodução/genética , Testículo/metabolismo , Animais , Sistemas CRISPR-Cas , Edição de Genes , Masculino , Camundongos , Filogenia , Motilidade dos Espermatozoides/genética , Espermatogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA