Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 158, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429693

RESUMO

BACKGROUND AND AIMS: Intercropping is an agriculture system used to enhance the efficiency of resource utilization and maximize crop yield grown under environmental stress such as salinity. Nevertheless, the impact of intercropping forage legumes with annual cereals on soil salinity remains unexplored. This research aimed to propose an intercropping system with alfalfa (Medicago sativa)/sea barley (Hordeum marinum) to explore its potential effects on plant productivity, nutrient uptake, and soil salinity. METHODS: The experiment involved three harvests of alfalfa and Hordeum marinum conducted under three cropping systems (sole, mixed, parallel) and subjected to salinity treatments (0 and 150 mM NaCl). Agronomical traits, nutrient uptake, and soil properties were analyzed. RESULTS: revealed that the variation in the measured traits in both species was influenced by the cultivation mode, treatment, and the interaction between cultivation mode and treatment. The cultivation had the most significant impact. Moreover, the mixed culture (MC) significantly enhanced the H. marinum and M. sativa productivity increasing biomass yield and development growth under salinity compared to other systems, especially at the second harvest. Furthermore, both intercropping systems alleviated the nutrient uptake under salt stress, as noted by the highest levels of K+/Na+ and Ca2+/Mg2+ ratios compared to monoculture. However, the intercropping mode reduced the pH and the electroconductivity (CEC) of the salt soil and increased the percentage of organic matter and the total carbon mostly with the MC system. CONCLUSIONS: Intercropped alfalfa and sea barely could mitigate the soil salinity, improve their yield productivity, and enhance nutrient uptake. Based on these findings, we suggest implementing the mixed-culture system for both target crops in arid and semi-arid regions, which further promotes sustainable agricultural practices.


Assuntos
Hordeum , Solo , Solo/química , Medicago sativa , Agricultura , Produtos Agrícolas
2.
Front Plant Sci ; 15: 1348168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756967

RESUMO

Salinity and Phoma medicaginis infection represent significant challenges for alfalfa cultivation in South Africa, Europe, Australia, and, particularly, Tunisia. These constraints have a severe impact on both yield and quality. The primary aim of this study was to establish the genetic basis of traits associated with biomass and growth of 129 Medicago sativa genotypes through genome-wide association studies (GWAS) under combined salt and P. medicaginis infection stresses. The results of the analysis of variance (ANOVA) indicated that the variation in these traits could be primarily attributed to genotype effects. Among the test genotypes, the length of the main stem, the number of ramifications, the number of chlorotic leaves, and the aerial fresh weight exhibited the most significant variation. The broad-sense heritability (H²) was relatively high for most of the assessed traits, primarily due to genetic factors. Cluster analysis, applied to morpho-physiological traits under the combined stresses, revealed three major groups of accessions. Subsequently, a GWAS analysis was conducted to validate significant associations between 54,866 SNP-filtered single-nucleotide polymorphisms (SNPs) and seven traits. The study identified 27 SNPs that were significantly associated with the following traits: number of healthy leaves (two SNPs), number of chlorotic leaves (five SNPs), number of infected necrotic leaves (three SNPs), aerial fresh weight (six SNPs), aerial dry weight (nine SNPs), number of ramifications (one SNP), and length of the main stem (one SNP). Some of these markers are related to the ionic transporters, cell membrane rigidity (related to salinity tolerance), and the NBS_LRR gene family (associated with disease resistance). These findings underscore the potential for selecting alfalfa genotypes with tolerance to the combined constraints of salinity and P. medicaginis infection.

3.
J Biotechnol ; 356: 42-50, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914618

RESUMO

This study evaluated the effects of the exogenous application of ethylenediaminetetraacetic acid (EDTA), indole-3-acetic acid (IAA) and iron sulfate (FeSO4) upon the phytochemical mechanisms of fenugreek grown under Pb-excess (2000 mg L-1 PbCl2). The results showed that chemical additives of EDTA and IAA as well as FeSO4 improved fenugreek germination parameters. The radicle length and the amylase activity were significantly improved under IAA treatment compared to EDTA and FeSO4. Exogenous FeSO4 was more effective to improving growth parameters. Moreover, the decrease in hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels was noted under all chemical additives especially under IAA application. In addition, it was more effective than EDTA and Fe in increasing catalase, glutathione (GSH), ascorbate peroxidase (APX), flavonoids and phenols while the increment superoxide dismutase (SOD) production was more pronounced under EDTA addition to Pb than other chelators. HPLC analysis revealed that the gallic was the major phenol produced under all chelators addition especially with IAA. In addition, the syringic acid was only produced with exogenous IAA while the quercetin was only detected under EDTA addition. Our results exhibited a higher IAA efficiency than EDTA and FeSO4 in mitigating Pb stress in fenugreek through up-regulated mechanisms of the antioxidant system for reducing reactive oxygen species (ROS) activities and enhancing special phenols.


Assuntos
Trigonella , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , Quelantes/metabolismo , Ácido Edético/metabolismo , Ácido Edético/farmacologia , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Ácidos Indolacéticos , Chumbo/metabolismo , Chumbo/toxicidade , Estresse Oxidativo , Fenóis/metabolismo , Compostos Fitoquímicos/metabolismo , Superóxido Dismutase/metabolismo , Trigonella/metabolismo
4.
Plants (Basel) ; 11(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36235392

RESUMO

Lead stands as a food contaminant through its accumulation in consumed plants. In this study, the effects of lead (II) chloride (PbCl2) and its levels of uptake on morphological and phytochemical responses of fenugreek were assessed to evaluate its tolerance and safety for human consumption. Results revealed that PbCl2 (50−2000 mg L−1) did not affect the germination rate, but it decreased the radicle length and amylase activity. After three months of Pb treatments, the elemental analysis showed that Pb accumulation was greater in roots than shoots, and it was not present in harvested seeds. The bioaccumulation factor > 1 and the translocation factor << 1 observed for 1000 mg L−1 PbCl2 suggested appropriateness of fenugreek as a phytostabilizer. Additionally, increased lipid peroxidation, hydrogen peroxide, flavonoid levels and catalase activity were observed in Pb-treated fenugreek. Meanwhile, decreased chlorophyll content was detected under these conditions. In turn, the total phenol was correlated with Pb treatment only in roots. HPLC analysis proved that under Pb stress, gallic acid was the most produced compound in treated roots compared to shoots, followed by quercetin. Syringic and chlorogenic acids were more produced in shoots. In conclusion, fenugreek can be used for Pb phytoremediation and is safe for consumption after Pb treatments in the traditional medicine system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA