Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807162

RESUMO

Prader-Willi syndrome (PWS) is a neurogenetic multifactorial disorder caused by the deletion or inactivation of paternally imprinted genes on human chromosome 15q11-q13. The affected homologous locus is on mouse chromosome 7C. The positional conservation and organization of genes including the imprinting pattern between mice and men implies similar physiological functions of this locus. Therefore, considerable efforts to recreate the pathogenesis of PWS have been accomplished in mouse models. We provide a summary of different mouse models that were generated for the analysis of PWS and discuss their impact on our current understanding of corresponding genes, their putative functions and the pathogenesis of PWS. Murine models of PWS unveiled the contribution of each affected gene to this multi-facetted disease, and also enabled the establishment of the minimal critical genomic region (PWScr) responsible for core symptoms, highlighting the importance of non-protein coding genes in the PWS locus. Although the underlying disease-causing mechanisms of PWS remain widely unresolved and existing mouse models do not fully capture the entire spectrum of the human PWS disorder, continuous improvements of genetically engineered mouse models have proven to be very powerful and valuable tools in PWS research.


Assuntos
Modelos Animais de Doenças , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Animais , Mapeamento Cromossômico/métodos , Metilação de DNA , Engenharia Genética/métodos , Genoma , Impressão Genômica , Humanos , Masculino , Camundongos , RNA Nucleolar Pequeno/genética
2.
Zool Res ; 42(2): 170-181, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33738989

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread rapidly worldwide with high rates of transmission and substantial mortality. To date, however, no effective treatments or enough vaccines for COVID-19 are available. The roles of angiotensin converting enzyme 2 (ACE2) and spike protein in the treatment of COVID-19 are major areas of research. In this study, we explored the potential of ACE2 and spike protein as targets for the development of antiviral agents against SARS-CoV-2. We analyzed clinical data, genetic data, and receptor binding capability. Clinical data revealed that COVID-19 patients with comorbidities related to an abnormal renin-angiotensin system exhibited more early symptoms and poorer prognoses. However, the relationship between ACE2 expression and COVID-19 progression is still not clear. Furthermore, if ACE2 is not a good targetable protein, it would not be applicable across a wide range of populations. The spike-S1 receptor-binding domain that interacts with ACE2 showed various amino acid mutations based on sequence analysis. We identified two spike-S1 point mutations (V354F and V470A) by receptor-ligand docking and binding enzyme-linked immunosorbent assays. These variants enhanced the binding of the spike protein to ACE2 receptors and were potentially associated with increased infectivity. Importantly, the number of patients infected with the V354F and V470A mutants has increased with the development of the SARS-CoV-2 pandemic. These results suggest that ACE2 and spike-S1 are likely not ideal targets for the design of peptide drugs to treat COVID-19 in different populations.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/enzimologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Alelos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/terapia , COVID-19/virologia , Humanos , Mutação Puntual , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
Nucleic Acids Res ; 36(21): 6934-43, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18978026

RESUMO

Self-splicing of group I introns is accomplished by two sequential ester-transfer reactions mediated by sequential binding of two different guanosine ligands, but it is yet unclear how the binding is coordinated at a single G-binding site. Using a three-piece trans-splicing system derived from the Candida intron, we studied the effect of the prior GTP binding on the later omegaG binding by assaying the ribozyme activity in the second reaction. We showed that adding GTP simultaneously with and prior to the esterified omegaG in a substrate strongly accelerated the second reaction, suggesting that the early binding of GTP facilitates the subsequent binding of omegaG. GTP-mediated facilitation requires C2 amino and C6 carbonyl groups on the Watson-Crick edge of the base but not the phosphate or sugar groups, suggesting that the base triple interactions between GTP and the binding site are important for the subsequent omegaG binding. Strikingly, GTP binding loosens a few local structures of the ribozyme including that adjacent to the base triple, providing structural basis for a rapid exchange of omegaG for bound GTP.


Assuntos
Guanosina Trifosfato/química , Guanosina/química , Íntrons , RNA Catalítico/química , Sítios de Ligação , Candida/enzimologia , Candida/genética , Ésteres/química , Éxons , Guanosina Trifosfato/metabolismo , Cinética , Sítios de Splice de RNA , RNA Catalítico/metabolismo
4.
Cells ; 9(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003364

RESUMO

Alzheimer's disease (AD) is an age-related detrimental dementia. Amyloid beta peptides (Aß) play a crucial role in the pathology of AD. In familial AD, Aß are generated from the full-length amyloid beta precursor protein (APP) via dysregulated proteolytic processing; however, in the case of sporadic AD, the mechanism of Aß biogenesis remains elusive. circRNAs are a class of transcripts preferentially expressed in brain. We identified a circRNA harboring the Aß-coding region of the APP gene termed circAß-a. This circular RNA was detected in the brains of AD patients and non-dementia controls. With the aid of our recently established approach for analysis of circRNA functions, we demonstrated that circAß-a is efficiently translated into a novel Aß-containing Aß175 polypeptide (19.2 KDa) in both cultured cells and human brain. Furthermore, Aß175 was shown to be processed into Aß peptides-a hallmark of AD. In summary, our analysis revealed an alternative pathway of Aß biogenesis. Consequently, circAß-a and its corresponding translation product could potentially represent novel therapeutic targets for AD treatment. Importantly, our data point to yet another evolutionary route for potentially increasing proteome complexity by generating additional polypeptide variants using back-splicing of primary transcripts that yield circular RNA templates.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Humanos , Sítios Internos de Entrada Ribossomal/genética , Íntrons , Espectrometria de Massas , Camundongos
5.
Sci Rep ; 9(1): 11684, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406268

RESUMO

Circular RNAs (circRNAs) are an emerging class of RNA molecules that have been linked to human diseases and important regulatory pathways. Their functional roles are still under investigation, often hampered by inefficient circRNA formation in and ex vivo. We generated an intron-mediated enhancement (IME) system that-in comparison to previously published methods-increases circRNA formation up to 5-fold. This strategy also revealed previously undetected translation of circRNA, e.g., circRtn4. Substantiated by Western blots and mass spectrometry we showed that in mammalian cells, translation of circRtn4 containing a potential "infinite" circular reading frame resulted in "monomers" and extended proteins, presumably "multimer" tandem repeats. In order to achieve high levels of circRNA formation and translation of other natural or recombinant circRNAs, we constructed a versatile circRNA expression vector-pCircRNA-DMo. We demonstrated the general applicability of this method by efficiently generating two additional circRNAs exhibiting high expression levels. The circRNA expression vector will be an important tool to investigate different aspects of circRNA biogenesis and to gain insights into mechanisms of circular RNA translation.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Biossíntese de Proteínas , RNA Circular/genética , RNA Mensageiro/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Éxons , Células HEK293 , Humanos , Íntrons , Camundongos , MicroRNAs/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , RNA Circular/química , RNA Circular/metabolismo , RNA Mensageiro/metabolismo
6.
Genome Biol Evol ; 5(11): 2061-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24132753

RESUMO

The evolution of new genes can ensue through either gene duplication and the neofunctionalization of one of the copies or the formation of a de novo gene from hitherto nonfunctional, neutrally evolving intergenic or intronic genomic sequences. Only very rarely are entire genes created de novo. Mostly, nonfunctional sequences are coopted as novel parts of existing genes, such as in the process of exonization whereby introns become exons through changes in splicing. Here, we report a case in which a novel nonprotein coding RNA evolved by intron-sequence recruitment into its structure. cDNAs derived from rat brain small RNAs, revealed a novel small nucleolar RNA (snoRNA) originating from one of the Snord115 copies in the rat Prader-Willi syndrome locus. We suggest that a single-point substitution in the Snord115 region led to the expression of a longer snoRNA variant, designated as L-Snord115. Cell culture and footprinting experiments confirmed that a single nucleotide substitution at Snord115 position 67 destabilized the kink-turn motif within the canonical snoRNA, while distal intronic sequences provided an alternate D-box region. The exapted sequence displays putative base pairing to 28S rRNA and mRNA targets.


Assuntos
Evolução Molecular , Processamento Pós-Transcricional do RNA , RNA Nucleolar Pequeno/genética , Animais , Sequência de Bases , Células HeLa , Humanos , Íntrons , Dados de Sequência Molecular , Motivos de Nucleotídeos , Síndrome de Prader-Willi/genética , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/metabolismo , Ratos
7.
Biochimie ; 93(3): 533-41, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21129434

RESUMO

Folding of large structured RNAs into their functional tertiary structures at high temperatures is challenging. Here we show that I-TnaI protein, a small LAGLIDADG homing endonuclease encoded by a group I intron from a hyperthermophilic bacterium, acts as a maturase that is essential for the catalytic activity of this intron at high temperatures and physiological cationic conditions. I-TnaI specifically binds to and induces tertiary packing of the P4-P6 domain of the intron; this RNA-protein complex might serve as a thermostable platform for active folding of the entire intron. Interestingly, the binding affinity of I-TnaI to its cognate intron RNA largely increases with temperature; over 30-fold stronger binding at higher temperatures relative to 37 °C correlates with a switch from an entropy-driven (37 °C) to an enthalpy-driven (55-60 °C) interaction mode. This binding mode may represent a novel strategy how an RNA binding protein can promote the function of its target RNA specifically at high temperatures.


Assuntos
Endonucleases/metabolismo , Íntrons/genética , Estabilidade de RNA , Temperatura , Sequência de Bases , Splicing de RNA , RNA Bacteriano/genética , Especificidade por Substrato , Termodinâmica , Thermotoga neapolitana/enzimologia , Thermotoga neapolitana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA