Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 152: 109776, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019128

RESUMO

Type I IFNs are a subset of cytokines exerting their antiviral effects mainly through the JAK-STAT signalling. Immunogenetic studies have shown that fish possess key components of IFN-JAK-STAT cascade, but the information about the distinct responses of STAT1 and STAT2 to different IFNs is rather limited in fish. Here, we identified and cloned STAT1 and STAT2 genes (named as On-STAT1 and On-STAT2) from tilapia, Oreochromis niloticus. On-STAT1 and On-STAT2 genes were detected in all orangs/tissues examined, and were rapidly induced in spleen, head kidney, and liver following the stimulation of poly(I:C). In addition, the stimulation of poly(I:C), poly(A:T), and different subgroups of recombinant IFNs could induce the expression of On-STAT1 and On-STAT2 in TA-02 cells with distinct induction levels. Importantly, On-STAT2 was rapidly phosphorylated by all three subgroups of IFNs, but the phosphorylation of On-STAT1 was only observed in IFNc- and IFNh-treated TA-02 cells, reflecting the distinct activation of STAT by different subgroups of fish IFNs. The present results thus contribute to better understanding of the JAK-STAT signalling mediated by different subgroups of IFNs in fish.


Assuntos
Proteínas de Peixes , Fator de Transcrição STAT1 , Fator de Transcrição STAT2 , Animais , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fosforilação , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Ciclídeos/imunologia , Ciclídeos/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária , Transdução de Sinais/efeitos dos fármacos
2.
Fish Shellfish Immunol ; 150: 109598, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697375

RESUMO

In mammals, IL-22 is considered as a critical cytokine regulating of immunity and homeostasis at barrier surfaces. Although IL-22 have been functional characterization in different species of fish, the studies about distinct responses of IL-22 in different organs/tissues/cell types is rather limited. Here, we identified and cloned IL-22 gene (named as Ec-IL-22) from grouper (Epinephelus coioides). Ec-IL-22 gene was detected in all orangs/tissues examined, and was induced in intestine, gill, spleen, head kidney, and primary head kidney/intestine leukocytes following the stimulation of LPS and poly (I:C), as well as Vibrio harveyi and Singapore grouper iridovirus infection (SGIV). In addition, the stimulation of DSS could induce the expression of Ec-IL-22 in intestine and primary leukocytes from intestine. Importantly, the treatment of recombinant Ec-IL-22 induced the mRNA level of proinflammatory cytokines in primary intestine/head kidney leukocytes. The present results improve the understanding of expression patterns and functional characteristics of fish IL-22 in different organs/tissues/cell types.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Interleucina 22 , Interleucinas , Vibrioses , Vibrio , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Interleucinas/genética , Interleucinas/imunologia , Bass/imunologia , Bass/genética , Vibrio/fisiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Vibrioses/imunologia , Vibrioses/veterinária , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Poli I-C/farmacologia , Lipopolissacarídeos/farmacologia , Ranavirus/fisiologia
3.
Proc Natl Acad Sci U S A ; 113(42): E6362-E6371, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27708167

RESUMO

The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (EIF), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials.


Assuntos
Fenômenos Biomecânicos , Colágeno , Equinodermos , Matriz Extracelular/química , Algoritmos , Animais , Colágeno/química , Modelos Teóricos , Pepinos-do-Mar , Estrelas-do-Mar , Difração de Raios X
4.
Gene ; 928: 148770, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39032703

RESUMO

Peptidoglycan recognition proteins (PGRPs) are a family of multifunctional proteins playing vital roles in PGN metabolism and antibacterial defense, and their functions have been well-characterized in mammals, bony fishes, and insects. However, the information about the functions of amphibian long-type PGRP is rather limited. Here, we identified and cloned a long-type PGRP gene (named Xl-PGRP-L) from African clawed frog, Xenopus laevis. Xl-PGRP-L gene was detected in all orangs/tissues examined, and was rapidly induced in intestine, liver, and lung following the stimulation of PGN. Sequence analysis showed that Xl-PGRP-L possesses four Zn2+-binding residues (His358, Tyr395, His470, and Cys478) required for amidase activity of catalytic PGRPs, and assays for amidase activity revealed that recombinant Xl-PGRP-L cloud degrade PGN in a Zn2+-dependent manner, indicating that Xl-PGRP-L is belonging to catalytic PGRPs. In addition, Xl-PGRP-L have antibacterial activity against Gram-negative bacteria Edwardsiella tarda and Gram-positive bacteria Streptococcus agalactiae. The present investigation represents the first characterization regarding the biological activities of amphibian long-type PGRPs, thus contributes to a better understanding of the functions of tetrapod PGRPs and the molecular mechanisms of amphibian antibacterial defense.


Assuntos
Proteínas de Transporte , Proteínas de Xenopus , Xenopus laevis , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Clonagem Molecular , Sequência de Aminoácidos , Peptidoglicano/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Zinco/metabolismo , Filogenia , Streptococcus agalactiae/genética
5.
Materials (Basel) ; 11(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347641

RESUMO

Ice cream is a complex multi-phase colloidal soft-solid and its three-dimensional microstructure plays a critical role in determining the oral sensory experience or mouthfeel. Using in-line phase contrast synchrotron X-ray tomography, we capture the rapid evolution of the ice cream microstructure during heat shock conditions in situ and operando, on a time scale of minutes. The further evolution of the ice cream microstructure during storage and abuse was captured using ex situ tomography on a time scale of days. The morphology of the ice crystals and unfrozen matrix during these thermal cycles was quantified as an indicator for the texture and oral sensory perception. Our results reveal that the coarsening is due to both Ostwald ripening and physical agglomeration, enhancing our understanding of the microstructural evolution of ice cream during both manufacturing and storage. The microstructural evolution of this complex material was quantified, providing new insights into the behavior of soft-solids and semi-solids, including many foodstuffs, and invaluable data to both inform and validate models of their processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA