Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Hepatology ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725757

RESUMO

The remarkable impact of RNA nanomedicine during the COVID-19 pandemic has demonstrated the expansive therapeutic potential of this field in diverse disease contexts. In recent years, RNA nanomedicine targeting the liver has been paradigm-shifting in the management of metabolic diseases such as hyperoxaluria and amyloidosis. RNA nanomedicine has significant potential in the management of liver diseases, where optimal management would benefit from targeted delivery, doses titrated to liver metabolism, and personalized therapy based on the specific site of interest. In this review, we discuss in-depth the different types of RNA and nanocarriers used for liver targeting along with their specific applications in metabolic dysfunction-associated steatotic liver disease, liver fibrosis, and liver cancers. We further highlight the strategies for cell-specific delivery and future perspectives in this field of research with the emergence of small activating RNA, circular RNA, and RNA base editing approaches.

2.
Nano Lett ; 23(22): 10099-10102, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930273

RESUMO

Lung-targeting RNA-carrying lipid nanoparticles (LNPs) are often intravenously administered and accumulate in the pulmonary endothelium. However, most respiratory diseases are localized in the airway or the alveolar epithelium. Inhalation has been explored as a more direct delivery method, but it presents its own challenges. We believe that one reason LNPs have failed to transfect RNA into alveolar epithelial cells is their interaction with the lung surfactant (LS). We propose that inhalable LNP design should take inspiration from biological agents and other nanoparticles to overcome this barrier. Screening should first focus on LS penetration and then be optimized for cell uptake and endosomal release. This will enable more efficient applications of RNA-LNPs in lung diseases.


Assuntos
Nanopartículas , Surfactantes Pulmonares , Tensoativos , Surfactantes Pulmonares/uso terapêutico , Pulmão , Terapia Genética , RNA , RNA Interferente Pequeno
3.
Gastroenterology ; 162(4): 1183-1196, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968454

RESUMO

BACKGROUND & AIMS: N6-methyladenosine (m6A) governs the fate of RNAs through m6A readers. Colorectal cancer (CRC) exhibits aberrant m6A modifications and expression of m6A regulators. However, how m6A readers interpret oncogenic m6A methylome to promote malignant transformation remains to be illustrated. METHODS: YTH N6-methyladenosine RNA binding protein 1 (Ythdf1) knockout mouse was generated to determine the effect of Ythdf1 in CRC tumorigenesis in vivo. Multiomic analysis of RNA-sequencing, m6A methylated RNA immunoprecipitation sequencing, YTHDF1 RNA immunoprecipitation sequencing, and proteomics were performed to unravel targets of YTHDF1 in CRC. The therapeutic potential of targeting YTHDF1-m6A-Rho/Rac guanine nucleotide exchange factor 2 (ARHGEF2) was evaluated using small interfering RNA (siRNA) encapsulated by lipid nanoparticles (LNP). RESULTS: DNA copy number gain of YTHDF1 is a frequent event in CRC and contributes to its overexpression. High expression of YTHDF1 is significantly associated with metastatic gene signature in patient tumors. Ythdf1 knockout in mice dampened tumor growth in an inflammatory CRC model. YTHDF1 promotes cell growth in CRC cell lines and primary organoids and lung and liver metastasis in vivo. Integrative multiomics analysis identified RhoA activator ARHGEF2 as a key downstream target of YTHDF1. YTHDF1 binds to m6A sites of ARHGEF2 messenger RNA, resulting in enhanced translation of ARHGEF2. Ectopic expression of ARHGEF2 restored impaired RhoA signaling, cell growth, and metastatic ability both in vitro and in vivo caused by YTHDF1 loss, verifying that ARHGEF2 is a key target of YTHDF1. Finally, ARHGEF2 siRNA delivered by LNP significantly suppressed tumor growth and metastasis in vivo. CONCLUSIONS: We identify a novel oncogenic epitranscriptome axis of YTHDF1-m6A-ARHGEF2, which regulates CRC tumorigenesis and metastasis. siRNA-delivering LNP drug validated the therapeutic potential of targeting this axis in CRC.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Carcinogênese/genética , Neoplasias Colorretais/patologia , Humanos , Lipossomos , Camundongos , Nanopartículas , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
4.
Angew Chem Int Ed Engl ; 62(28): e202305564, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162307

RESUMO

Indocyanine green (ICG) is the only near-infrared (NIR) dye approved for clinical use. Despite its versatility in photonic applications and potential for photothermal therapy, its photobleaching hinders its application. Here we discovered a nanostructure of dimeric ICG (Nano-dICG) generated by using ICG to stabilize nanoemulsions, after which ICG enabled complete dimerization on the nanoemulsion shell, followed by J-aggregation of ICG-dimer, resulting in a narrow, red-shifted (780 nm→894 nm) and intense (≈2-fold) absorbance. Compared to ICG, Nano-dICG demonstrated superior photothermal conversion (2-fold higher), significantly reduced photodegradation (-9.6 % vs. -46.3 %), and undiminished photothermal effect (7 vs. 2 cycles) under repeated irradiations, in addition to excellent colloidal and structural stabilities. Following intravenous injection, Nano-dICG enabled real-time tracking of its delivery to mouse tumors within 24 h by photoacoustic imaging at NIR wavelength (890 nm) distinct from the endogenous signal to guide effective photothermal therapy. The unprecedented finding of nanostructure-driven ICG dimerization leads to an ultra-stable phototheranostic platform.


Assuntos
Nanopartículas , Nanoestruturas , Camundongos , Animais , Verde de Indocianina/química , Dimerização , Nanopartículas/química , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Polímeros , Fototerapia/métodos , Linhagem Celular Tumoral
5.
Nano Lett ; 19(10): 6964-6976, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31518149

RESUMO

Immunotherapy through stimulating the host immune system has emerged as a powerful therapeutic strategy for various malignant and metastatic tumors in the clinic. However, harnessing the immune system for cancer treatment often fails to obtain a durable response rate due to the poor immunogenicity and the strong immunosuppressive milieu in the tumor site. Herein, a redox-activated liposome was developed from the self-assembly of the porphyrin-phospholipid conjugate and coencapsulation of indoleamine 2,3-dioxygenase (IDO) inhibitor into the interior lumen via remote-loading for simultaneous induction of immunogenic cell death (ICD) and reversing of suppressive tumor microenvironment. The nanoparticle exhibited prolonged blood circulation and enhanced tumor accumulation in the 4T1 tumor-bearing mice after intravenous injection. The nanovesicle could render exponential activation of fluorescence signal and photodynamic therapy (PDT) activity (>100-fold) in response to the high level of intracellular glutathione after endocytosed by tumor cells, thereby achieving effective inhibition of tumor growth and reduced phototoxicity to normal tissues owing to the activatable design of the nanoparticle. More importantly, redox-activated PDT induced intratumoral infiltration of cytotoxic T lymphocytes by induction of ICD of tumor cells. After combining with the IDO inhibitor, the systemic antitumor immune response was further augmented. Hence, we believe that the present nanovesicle strategy has the potential for the synergistic immunotherapy of the metastatic cancers.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias Mamárias Animais/tratamento farmacológico , Nanopartículas/uso terapêutico , Porfirinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Lipossomos/uso terapêutico , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Fotoquimioterapia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/efeitos dos fármacos
6.
Acta Pharmacol Sin ; 39(4): 633-641, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29323335

RESUMO

Glucocorticoid (GC)-induced osteoporosis (GIO) is characterized by impaired bone formation, which can be alleviated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. In this study we investigated the molecular mechanisms underlying GC-induced modulation of osteogenesis as well as the possibility of using tanshinol to interfere with GIO. Female SD rats aged 4 months were orally administered distilled water (Con), prednisone (GC, 5 mg·kg-1·d-1), GC plus tanshinol (Tan, 16 mg·kg-1·d-1) or GC plus resveratrol (Res, 5 mg·kg-1·d-1) for 14 weeks. After the rats were sacrificed, samples of bone tissues were collected. The changes in bone formation were assessed using Micro-CT, histomorphometry, and biomechanical assays. Expression of Kruppel-like factor 15 (KLF15), peroxisome proliferator-activated receptor γ 2 (PPARγ 2) and other signaling proteins in skeletal tissue was measured with Western blotting and quantitative RT-PCR. GC treatment markedly increased the expression of KLF15, PPARγ2, C/EBPα and aP2, which were related to adipogenesis, upregulated FoxO3a pathway proteins (FoxO3a and Gadd45a), and suppressed the canonical Wnt signaling (ß-catenin and Axin2), which was required for osteogenesis. Thus, GC significantly decreased bone mass and bone quality. Co-treatment with Tan or Res effectively counteracted GC-impaired bone formation, suppressed GC-induced adipogenesis, and restored abnormal expression of the signaling molecules in GIO rats. We conclude that tanshinol counteracts GC-decreased bone formation by inhibiting marrow adiposity via the KLF15/PPARγ2/FoxO3a/Wnt pathway.


Assuntos
Adipogenia/efeitos dos fármacos , Ácidos Cafeicos/uso terapêutico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Medula Óssea/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Regulação para Baixo , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Proteína Forkhead Box O3/genética , Fatores de Transcrição Kruppel-Like/genética , PPAR gama/genética , Prednisona/administração & dosagem , Prednisona/farmacologia , Ratos Sprague-Dawley , Resveratrol , Estilbenos/administração & dosagem , Estilbenos/farmacologia , Regulação para Cima , Via de Sinalização Wnt/genética
8.
J Pharm Biomed Anal ; 243: 116112, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513502

RESUMO

The therapeutic effects of Chinese herbal compounds are often achieved through the synergistic interactions of multiple ingredients. However, current research predominantly focuses on individual ingredients, neglecting the holistic nature of Chinese herbal compounds. This study proposes a novel strategy to elucidate the pharmacodynamic material basis of Chinese herbal compounds based on their multi-components (components named 'ZuFen' in China, it refers to multiple ingredients with similar chemical structures) composition, using the Xian-Ling-Gu-Bao (XLGB) capsule as a case study. Cheminformatics-based components partitioning was conducted after sourcing ingredients from various databases, resulting in a total of 856 ingredients which were categorized into nine major components. Furthermore, the pharmacodynamic ingredients of XLGB capsule were determined by analyzing the ingredients that were absorbed into the bloodstream. Through a combination of these ingredients and screening for absorption, the Dipsacus asper saponin components, Psoralea corylifolia coumarin components, and Epimedium flavonoid polyglycosides components were isolated. The anti-osteoporosis efficacy of these components were evaluated in zebrafish, demonstrating their capability to reverse mineralization reduction caused by prednisolone. These findings further support the idea that these components serve as the material basis for the pharmacological efficacy of XLGB capsule. This study provides a novel systematic strategy for discovering the pharmacodynamic material basis of the efficacy of Chinese herbal compounds based on a 'multi-components' perspective.


Assuntos
Medicamentos de Ervas Chinesas , Osteoporose , Saponinas , Animais , Peixe-Zebra , Medicamentos de Ervas Chinesas/química , Flavonoides , Osteoporose/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos
9.
Int J Pharm ; 653: 123914, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38373597

RESUMO

Drug-in-cyclodextrin-in-liposome (DCL) combines advantages of cyclodextrin and liposome. Here, DCL formulation was successfully prepared to encapsulate limonene (Lim), whose characterization revealed that particle size was 147.5 ± 1.3 nm and zeta potential was -48.7 ± 0.8 mV. And the complexation mechanism of Lim/HP-ß-CD inclusion complex (the intermediate of DCL) was analyzed by molecular dynamics simulation, showing that Lim was entrapped into the cavity of HP-ß-CD through electrostatic and hydrophobic interaction with a molar ratio of 1:1. Notably, DCL formulation not only reduced Lim volatilization in 25℃, but also enhanced the free radical (DPPH· and ABTS·+) scavenging ability of Lim. In summary, Lim-DCL formulation improved the stability and enhanced the antioxidant activity of Lim. DCL nanocarrier system is suitable to preserve volatile and hydrophobic compounds, enlarging their application in pharmaceutics industries.


Assuntos
Antioxidantes , Ciclodextrinas , Antioxidantes/química , Lipossomos/química , Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Limoneno , Solubilidade
10.
ACS Nano ; 17(5): 4688-4703, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36853331

RESUMO

Lipid nanoparticles (LNPs) have achieved clinical success in delivering small interfering RNAs (siRNAs) for targeted gene therapy. However, endosomal escape of siRNA into the cytosol remains a fundamental challenge for LNPs. Herein, we report a strategy termed light-activated siRNA endosomal release (LASER) to address this challenge. We established a porphyrin-LNP by incorporating porphyrin-lipids into the clinically approved Onpattro formulation. The porphyrin-LNP maintained the physical properties of an LNP and generated reactive oxygen species (ROS) when irradiated with near-infrared (NIR) light. Using confocal microscopy, we revealed that porphyrin-lipids within the LNP translocate to endosomal membranes during endocytosis. The translocated porphyrin-lipids generated ROS under light irradiation and enabled LASER through endosomal membranes disruption as observed through GAL-9 recruitment and transmission electron microscopy (TEM). By establishing a quantitative confocal imaging method, we confirmed that porphyrin-LNPs can increase siRNA endosomal escape efficiency by up to 2-fold via LASER and further enhance luciferase target knockdown by 4-fold more in luciferase-transfected prostate cancer cells. Finally, we formulated porphyrin-LNPs encapsulated with gold nanoparticles (GNP) and visualized the LASER effect within prostate tumors via TEM, confirming the light-activated endosomal membrane disruption and subsequent GNP release into cytosols in vivo. Overall, porphyrin-LNPs and the LASER approach enhanced siRNA endosomal escape and significantly improved knockdown efficacy. We believe the versatility of this technology could be applied to various LNP-based RNA therapeutics.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro , Espécies Reativas de Oxigênio , RNA Interferente Pequeno/genética , Lipídeos , Luciferases , Lasers
11.
Int J Nanomedicine ; 18: 7335-7358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084126

RESUMO

Purpose: Asperosaponin VI (ASP VI) as an active ingredient of Dipsacus asperoides, which has a wide range of biological and pharmacological activity. However, its development and application are restricted due to the poor gastrointestinal permeability and oral bioavailability. This investigation aims to reveal the influence of the self-assembled structure by the interaction between ASP VI and endogenous components NaTC and/or DOPC in the gastrointestinal environment on its biopharmaceutical properties, and novelty elucidated the molecular mechanism for the formation of self-assembled nanomicelles. Methods: This change in phase state in gastrointestinal fluids is characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). UPLC-Q-TOF-MS was used to analyze the composition of phase components and the exposure of nanomicelles in vivo. Molecular dynamics simulation (MDS) was applied to preliminarily elucidate the self-assembly mechanism of ASP VI in the gastrointestinal environment. Furthermore, theS8 promoting absorption mechanism of nanomicelles were investigated through in vivo pharmacokinetic experiments, parallel artificial membrane permeability assay (PAMPA), quadruple single-pass intestinal perfusion in rats, and Caco-2 cell monolayer model. Results: We demonstrated that the ASP VI could spontaneously form dynamic self-assembled structures with sodium taurocholate (NaTC) and dipalmitoyl phosphatidylcholine (DOPC) during gastrointestinal solubilization, which promoted the gastrointestinal absorption and permeability of ASP VI and increased its exposure in vivo, thus improving the biopharmacological characteristics of ASP VI. Moreover, ASP VI-NaTC-DOPC-self-assembled nanostructures (ASP VI-NaTC-DOPC-SAN) manifested higher cellular uptake in Caco-2 cells as evidenced by flow cytometry and confocal microscopy, and this study also preliminarily revealed the mechanism of self-assembly formation of ASP VI with endogenous components NaTC and DOPC driven by electrostatic and hydrogen bonding interactions. Conclusion: This study provides evidence that the dynamic self-assembled phase transition may play a key role in improving the biopharmacological characteristics of insoluble or low permeability active ingredients during the gastrointestinal dissolution of Chinese medicines.


Assuntos
Absorção Intestinal , Humanos , Ratos , Animais , Células CACO-2 , Transporte Biológico , Disponibilidade Biológica
12.
Int J Nanomedicine ; 18: 6705-6724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026532

RESUMO

Purpose: Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods: In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-ß-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results: The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion: We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.


Assuntos
Astrágalo , Produtos Biológicos , Medicamentos de Ervas Chinesas , Flavonoides/química , Astrágalo/química , Polissacarídeos/química , Medicamentos de Ervas Chinesas/química
13.
Phytomedicine ; 116: 154875, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37263000

RESUMO

BACKGROUND: Osteoporosis (OP) is considered as one of the major comorbidities of rheumatoid arthritis (RA), and is responsible for fragility fracture. However, there is currently no effective treatment for RA complicated with OP. Tubson-2 decoction (TBD), a Mongolian medicine also known as Erwei Duzhong Decoction, has been shown to exert a preventive effect on post-menopausal osteoporosis (PMOP). The preventive effects of TBD on RA-induced OP, as well as the bioactive compound responsible and the underlying mechanisms, remain to be elucidated. OBJECTIVE: To explore the effects of TBD on RA-induced OP in vivo, and to elucidate the mechanism of isochlorogenic acid A (ICA), the effective component of TBD, in vitro. METHODS: To evaluate the anti-arthritic and anti-osteoporotic effects of TBD, we conducted H&E straining and safranine O/fast green, TEM, immunohistochemistry (IHC), bone histomorphometry, micro-CT imaging, and biomechanical testing in collagen induced arthritis (CIA) rats. The active ingredient in TBD was identified using network pharmacology and molecular docking. The identification was supported by in vivo IHC assay, and further confirmed using qRT-PCR, Western blot, and SEM analysis in TNF-α-treated MH7A cells and/or in LPS-exposed RAW264.7 cells. RESULTS: Oral administration of TBD attenuated the severity of arthritis and osteopenia as well as poor bone quality, in CIA rats. Additionally, TBD and the positive control, tripterygium glycosides (TG), exhibited similar effects in reducing inflammation in both the synovium and ankle joint. They also were both effective in improving bone loss, microarchitecture, and overall bone quality. TBD reduced the expression of MMP13, IL-17, and p-JNK protein in the synovium of CIA rats. ICA, which was screened, suppressed TNF-α or LPS-triggered inflammatory responses via down-regulating IL-17 signaling, involving in MMP13, IL-1ß, IL-23, and IL-17, and the MAPK pathway including p-ERK, p-JNK, and p-P38, both in MH7A cells and in RAW264.7 cells. Furthermore, ICA prevented osteoclasts from differentiating and bone resoprtion in a dose-dependent manner in vitro. CONCLUSION: This study provides the first evidence that TBD exerts intervening effects on RA-induced OP, possibly through the downregulation of the IL-17/MAPK signaling pathway by ICA. The findings of our study provides valuable insights for further research in this area.


Assuntos
Artrite Experimental , Artrite Reumatoide , Osteoporose , Ratos , Animais , Artrite Experimental/induzido quimicamente , Metaloproteinase 13 da Matriz , Fator de Necrose Tumoral alfa , Interleucina-17 , Lipopolissacarídeos/efeitos adversos , Simulação de Acoplamento Molecular , Citocinas/metabolismo , Artrite Reumatoide/tratamento farmacológico , Osteoporose/tratamento farmacológico
14.
Adv Healthc Mater ; 10(2): e2001549, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241672

RESUMO

Hypoxia is a ubiquitous feature of solid tumors, which plays a key role in tumor angiogenesis and resistance development. Conventional hypoxia detection methods lack continuous functional detection and are generally less suitable for dynamic hypoxia measurement. Optical sensors hereby provide a unique opportunity to noninvasively image hypoxia with high spatiotemporal resolution and enable real-time detection. Therefore, these approaches can provide a valuable tool for personalized treatment planning against this hallmark of aggressive cancers. Many small optical molecular probes can enable analyte triggered response and their photophysical properties can also be fine-tuned through structural modification. On the other hand, optical nanoprobes can acquire unique intrinsic optical properties through nanoconfinement as well as enable simultaneous multimodal imaging and drug delivery. Furthermore, nanoprobes provide biological advantages such as improving bioavailability and systemic delivery of the sensor to enhance bioavailability. This review provides a comprehensive overview of the physical, chemical, and biological analytes for cancer hypoxia detection and focuses on discussing the latest nano- and molecular developments in various optical imaging approaches (fluorescence, phosphorescence, and photoacoustic) in vivo. Finally, this review concludes with a perspective toward the potentials of these optical imaging approaches in hypoxia detection and the challenges with molecular and nanotechnology design strategies.


Assuntos
Neoplasias , Hipóxia Tumoral , Humanos , Imagem Molecular , Imagem Multimodal , Nanotecnologia , Neoplasias/diagnóstico por imagem , Imagem Óptica
15.
Front Pharmacol ; 12: 722175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335280

RESUMO

Impaired bone formation is the main characteristics of glucocorticoid (GC)-induced osteoporosis (GIO), which can be ameliorated by tanshinol, an aqueous polyphenol isolated from Salvia miltiorrhiza Bunge. However, the underlying mechanism is still not entirely clear. In the present study, we determined the parameters related to microstructure and function of bone tissue, bone microcirculation, and TXNIP signaling to investigate the beneficial effects of tanshinol on skeleton and its molecular mechanism in GIO rats. Male Sprague-Dawley rats aged 4 months were administrated orally with distilled water (Con), tanshinol (Tan, 25 mg kg-1 d-1), prednisone (GC, 5 mg kg-1 d-1) and GC plus tanshinol (GC + Tan) for 14 weeks. The results demonstrated that tanshinol played a significant preventive role in bone loss, impaired microstructure, dysfunction of bone metabolism and poor bone quality, based on analysis of correlative parameters acquired from the measurement by using Micro-CT, histomorphometry, ELISA and biomechanical assay. Tanshinol also showed a significant protective effect in bone microcirculation according to the evidence of microvascular perfusion imaging of cancellous bone in GIO rats, as well as the migration ability of human endothelial cells (EA.hy926, EA cells). Moreover, tanshinol also attenuated GC-elicited the activation of TXNIP signaling pathway, and simultaneously reversed the down-regulation of Wnt and VEGF pathway as manifested by using Western-blot method in GIO rats, EA cells, and human osteoblast-like MG63 cells (MG cells). Collectively, our data highlighted that tanshinol ameliorated poor bone health mediated by activation of TXNIP signaling via inhibiting microcirculation disturbance and the following impaired bone formation in GIO rats.

16.
Adv Sci (Weinh) ; 8(3): 2002253, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552856

RESUMO

Active-targeted nanoparticles are attractive carriers due to their potentials to facilitate specific delivery of drugs into tumor cells while sparing normal cells. However, the therapeutic outcomes of active-targeted nanomedicines are hampered by the multiple physiological barriers in the tumor microenvironment (TME). Herein, an epidermal growth factor receptor-targeted ultra-pH-sensitive nanophotosensitizer is fabricated, and the regulation of the TME to augment the active targeting ability and therapeutic efficacy is pinpointed. The results reveal that tumor vasculature normalization with thalidomide indiscriminately enhance the tumor accumulation of passive and active targeted nanoparticles, both of which are sequestered in the stromal bed of tumor mass. Whereas, photoablation of stromal cells located in perivascular regions significantly improves the accessibility of antibody-modified nanophotosensitizer to receptor-overexpressed cancer cells. After sequential regulation of TME, the antitumor efficacy of antibody-modified nanophotosensitizer is drastically enhanced through synergistic enhancements of tumor accumulation and cancer cell accessibility of active-targeted nanoparticles. The study offers deep insights about the intratumoral barriers that hinder the active-targeted nanoparticles delivery, and provides a basis for developing more effective strategies to accelerate the clinical translation of active-targeted nanomedicines.

17.
Life Sci ; 266: 118938, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347878

RESUMO

Oxidative stress is a promoting factor in the pathologic process of glucocorticoid - induced osteoporosis (GIO), while the mechanism is still unclear. Thioredoxin-interacting protein (TXNIP) is a vital protein responsible for regulation of cellular reactive oxygen species (ROS) generation elicited by mitochondrial oxidative stress, and which may activate oxidative phosphorylation under the pathogenic status. In this research, the results showed that signaling pathway associated with the mitochondrial oxidative phosphorylation (MOP) down-regulated under conditions of TXNIP siRNA in MG63 cells. Furthermore, the evidence revealed that the expression level of TXNIP in serum and bone was elevated in a rat of GIO. Moreover, the differential proteins (Ndufs3, SDHD, Cyt B, COX IV, and ATP B) related to MOP pathway were identified to down-regulate in the proteomics of bone tissues by using isobaric Tags for Relative and Absolute Quantification (iTRAQ) method in TXNIP knockout mice treated with glucocorticoid, and the proteins were also verified by simple western blot. Taken together, the present findings highlights that TXNIP involves in triggering the process of bone loss via up-regulation of the MOP pathway, resulting to GIO, while TXNIP knockout can prevent the pathogenesis of GIO to some extent.


Assuntos
Reabsorção Óssea/etiologia , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/metabolismo , Glucocorticoides/toxicidade , Mitocôndrias/patologia , Osteoporose/patologia , Fosforilação Oxidativa , Tiorredoxinas/fisiologia , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Proteínas de Ciclo Celular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
18.
Endocrine ; 64(1): 184-195, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30826991

RESUMO

PURPOSE: Osteopenia and skeletal fragility are considered to be the complications associated with type 2 diabetes mellitus (T2DM). The relationship between glucose metabolism, skeletal quality, and vitamin D have not been completely understood. We aimed to demonstrate a comprehensive bone quality profile in a T2DM model subject and to investigate whether 1, 25-dihydroxy vitamin D3 could prevent osteopenia and skeletal fragility in the diabetes model rats. METHODS: Daily calcitriol (a 1, 25-dihydroxy vitamin D3 formulation, 0.045 µg/kg/day) treatment was administered to 21-week-old male Goto-Kakizaki (GK) rats (a genetic non-obese and non-insulin-dependent spontaneous diabetes rat model) for 20 weeks and the results were compared with those in untreated GK rats, and wild-type animals. RESULTS: Micro-computed tomography, histomorphometry, and bone mineral density analysis demonstrated that T2DM induced significant osteopenia, and impairment of bone microarchitecture and biomechanical properties in GK rats. T2DM also significantly decreased bone formation and increased bone resorption parameters in three regions of the skeleton (proximal tibia, mid-shaft of the tibia, and lumbar vertebrae), and increased carboxy-terminal type I collagen crosslinks, tartrate-resistant acid phosphatase, muscle ubiquitin C, and bone thioredoxin interacting protein (TXNIP) expression. Calcitriol treatment significantly alleviated bone loss, and improved bone microarchitecture and biomechanical properties and also decreased serum glucose and glycated serum protein levels. Biomarkers of bone formation were significantly increased, while muscle ubiquitin C and bone TXNIP expression were significantly decreased following calcitriol treatment. CONCLUSIONS: These results suggest that 1,25-dihydroxy vitamin D3 treatment effectively attenuates osteopenia, and improves bone and muscle quality in GK type 2 diabetes model rats.


Assuntos
Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/tratamento farmacológico , Calcitriol/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Músculo Esquelético/efeitos dos fármacos , Animais , Doenças Ósseas Metabólicas/etiologia , Calcitriol/farmacologia , Modelos Animais de Doenças , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Resultado do Tratamento
19.
ACS Biomater Sci Eng ; 5(5): 2316-2329, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33405782

RESUMO

Thermosensitive liposomes (TSLs) have been widely investigated for controlled drug release at specific pathophysiological sites. Although excellent thermo-sensitivity under hyperthermia (HT) was already realized for TSLs, their in vivo stability under physiological temperature still remains challenging. To overcome this limitation, optimized polymer-based thermosensitive liposomes (P-TSLs) with good thermo-sensitivity as well as satisfactory in vivo stability were developed in this study for tumor-specific controlled delivery of doxorubicin (DOX). In particular, polymers including p(NIPAM-r-HPMA) and p(HPMA-r-APMA) were successfully synthesized based on a reversible addition-fragmentation chain transfer (RAFT) technique. Next, thermosensitive polymer p(NIPAM-r-HPMA) was first proposed to be inserted into the lipid bilayer of TTSL by a postinsertion method. The resulting P-TTSL had a phase transition temperature (Tm) of around 42 °C and displayed excellent thermo-sensitivity under HT: nearly 70% of DOX was released within 1 min when only 1% p(NIPAM-r-HPMA) was incorporated. Moreover, its stability was maintained at 37 °C. Compared with TTSL, significantly higher cellular uptake of DOX under HT was noticed in P-TTSL, indicating a burst release of DOX at 42 °C. In addition, both in vitro tumor spheroid experiments and in vivo tumor slices demonstrated an enhanced DOX deep penetration when treated by P-TTSL under HT. To achieve in vivo imaging and local HT under NIR, p (HPMA-r-APMA) was labeled by Cy7.5 and coinserted into TTSL, and the best drug efficacy was observed in CY-P-TTSL with HT along with prolonged blood circulation time. We have further investigated the biocompatibility of the developed CY-P-TTSL, and reduced cardiotoxicity was observed even under HT in comparison with free DOX, demonstrating it is a reliable thermosensitive drug carrier for improving drug stability and therapeutic efficacy.

20.
Anal Chim Acta ; 619(1): 54-8, 2008 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-18539174

RESUMO

A rapid analytical method for the determination of oxytetracycline (OTC), tetracycline (TC) and chloramphenicol (CAP) antibiotics in animal feeds has been developed based on subcritical water extraction (SWE) without further sample clean-up followed by high performance liquid chromatography (HPLC) with ultraviolet (UV) detection. On extracting target antibiotics from spiked samples, the efficiency of the water extraction device was evaluated in terms of pH and volume of the extractant, temperature and time of the static extraction. The best extraction conditions were obtained by using 5.5 mL of water adjusted to pH 2 with hydrochloric acid as the extractant at 100 degrees C with 5-min static extraction. After filtration, 20 microL of the aqueous extract was directly injected into the HPLC column. Recoveries between 82.1% and 90.0% with relative standard deviations ranging between 1.6% and 4.8% were achieved from spiked animal feed samples by using this method. Compared with the traditional ultrasonic extraction, this procedure was remarkably more efficient in extracting OTC, TC and CAP, simpler to perform, and there was no use of toxic organic solvents.


Assuntos
Ração Animal/análise , Antibacterianos/análise , Cloranfenicol/análise , Oxitetraciclina/análise , Água/química , Animais , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Temperatura , Fatores de Tempo , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA