Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(25): 7357-7377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35238258

RESUMO

Akkermansia muciniphila, a frequent colonizer in the gut mucous layer of individuals, has constantly been recognized as a promising candidate for the next generation of probiotics due to its biological advantages from in vitro and in vivo investigations. This manuscript comprehensively reviewed the features of A. muciniphila in terms of its function in host physiology and frequently utilized nutrition using the published peer-reviewed articles, which should present valuable and critical information to scientists, engineers, and even the general population. A. muciniphila is an important bacterium that shows host physiology. However, its physiological advantages in several clinical settings also have excellent potential to become a probiotic. Consequently, it can be stated that there is a coherent and direct relation between the biological activities of the gut microbiota, intestinal dysbiosis/eubiosis, and the population of A. muciniphila in the gut milieu, which is influenced by various genetical and nutritional factors. Current regulatory barriers, the need for large-scale clinical trials, and the feasibility of production must be removed before A muciniphila can be extensively used as a next-generation probiotic.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Verrucomicrobia , Akkermansia
2.
Crit Rev Food Sci Nutr ; : 1-21, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154539

RESUMO

Celiac disease (CD) as a chronic gluten-sensitive intestinal condition, mainly affects genetically susceptible hosts. The primary determinants of CD have been identified as environmental and genetic variables. The development of CD is significantly influenced by environmental factors, including the gut microbiome. Therefore, gut microbiome re-programming-based therapies using probiotics, prebiotics, postbiotics, gluten-free diet, and fecal microbiota transplantation have shown promising results in the modification of the gut microbiome. Due to the importance and paucity of information regarding the CD pathophysiology, in this review, we have covered the association between CD development and gut microbiota, the effects of infectious agents, particularly the recent Covid-19 infection in CD patients, and the efficacy of potential therapeutic approaches in the CD have been discussed. Hence, scientific literature indicates that the diverse biological functions of the gut microbiota against immunomodulatory responses have made microbiome-based therapy an alternative therapeutic paradigm to ameliorate the symptoms of CD and quality of life. However, the exact potential of microbiota-based techniques that aims to quantitatively and qualitatively alter the gut microbiota to be used in the treatment and ameliorate the symptoms of CD will be determined with further research in the future.

3.
Microb Pathog ; 149: 104344, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32534182

RESUMO

Faecalibacterium prausnitzii (F. prausnitzii) is one of the most abundant bacterial species in the colon of healthy human adults and representing more than 5% of the total bacterial population. Recently, it has been known as a major actor in human intestinal health and a biosensor. Changes in this species population richness and quantity have been observed in many illnesses and several investigations have reported that abundance of F. prausnitzii is reduced in different intestinal disorders. In the current review, we aim to consider literature from various library databases and electronic searches (Science Direct, PubMed, and Google Scholar) which were randomly collected and serve as an overview of different features of F. prausnitzii including metabolites, anti-inflammatory action, and correlation of dysbiosis of this bacterium with various complications in human.


Assuntos
Disbiose , Faecalibacterium prausnitzii , Adulto , Colo , Humanos
4.
Eur J Clin Microbiol Infect Dis ; 39(4): 613-627, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31828683

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the well-known disease of the liver in adults and children throughout the world. The main manifestations related to NAFLD are an unusual storage of lipid in hepatocytes (hepatic steatosis) and progression of inflammation for non-alcoholic steatohepatitis (NASH). NAFLD is described as a multifactorial complication due to the genetic predisposition, metabolic functions, inflammatory, gut microbiota (GM), and environmental factors. The GM dysregulation among these factors is correlated to NAFLD development. In recent decades, advanced microbial profiling methods are continuing to shed light on the nature of the changes in the GM caused by NASH and NAFLD. In the current review, we aim to perform a literature review in different library databases and electronic searches (Science Direct, PubMed, and Google Scholar) which were randomly obtained. This will be done in order to provide an overview of the relation between GM and NAFLD, and the role of prebiotics, probiotics, and fecal microbiota transplantation (FMT), as potential therapeutic challenges for NAFLD.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica/terapia , Animais , Progressão da Doença , Disbiose/complicações , Disbiose/microbiologia , Transplante de Microbiota Fecal , Humanos , Inflamação , Camundongos , Hepatopatia Gordurosa não Alcoólica/microbiologia , Prebióticos , Probióticos/uso terapêutico
5.
Eng Life Sci ; 24(5): 2300070, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708416

RESUMO

Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA