Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 117: 347-355, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266662

RESUMO

Human Immunodeficiency Virus-1 (HIV) infection of the brain induces HIV-associated neurocognitive disorders (HAND). The set of molecular events employed by HIV to drive cognitive impairments in people living with HIV are diverse and remain not completely understood. We have shown that the HIV envelope protein gp120 promotes loss of synapses and decreases performance on cognitive tasks through the p75 neurotrophin receptor (p75NTR). This receptor is abundant on cholinergic neurons of the basal forebrain and contributes to cognitive impairment in various neurological disorders. In this study, we examined cholinergic neurons of gp120 transgenic (gp120tg) mice for signs of degeneration. We observed that the number of choline acetyltransferase-expressing cells is decreased in old (12-14-month-old) gp120tg mice when compared to age matched wild type. In the same animals, we observed an increase in the levels of pro-nerve growth factor, a ligand of p75NTR, as well as a disruption of consolidation of extinction of conditioned fear, a behavior regulated by cholinergic neurons of the basal forebrain. Both biochemical and behavioral outcomes of gp120tg mice were rescued by the deletion of the p75NTR gene, strongly supporting the role that this receptor plays in the neurotoxic effects of gp120. These data indicate that future p75NTR-directed pharmacotherapies could provide an adjunct therapy against synaptic simplification caused by HIV.


Assuntos
Prosencéfalo Basal , Infecções por HIV , HIV-1 , Camundongos , Animais , Humanos , Lactente , Receptor de Fator de Crescimento Neural/metabolismo , Camundongos Transgênicos , HIV-1/metabolismo , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Infecções por HIV/metabolismo
2.
J Neurochem ; 165(6): 827-841, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36978267

RESUMO

There are a number of G-protein-coupled receptors (GPCRs) that are considered "orphan receptors" because the information on their known ligands is incomplete. Yet, these receptors are important targets to characterize, as the discovery of their ligands may lead to potential new therapies. GPR75 was recently deorphanized because at least two ligands appear to bind to it, the chemokine CCL5 and the eicosanoid 20-Hydroxyeicosatetraenoic acid. Recent reports suggest that GPR75 may play a role in regulating insulin secretion and obesity. However, little is known about the function of this receptor in the brain. To study the function of GPR75, we have generated a knockout (KO) mouse model of this receptor and we evaluated the role that this receptor plays in the adult hippocampus by an array of histological, proteomic, and behavioral endpoints. Using RNAscope® technology, we identified GPR75 puncta in several Rbfox3-/NeuN-positive cells in the hippocampus, suggesting that this receptor has a neuronal expression. Proteomic analysis of the hippocampus in 3-month-old GPR75 KO animals revealed that several markers of synapses, including synapsin I and II are downregulated compared with wild type (WT). To examine the functional consequence of this down-regulation, WT and GPR75 KO mice were tested on a hippocampal-dependent behavioral task. Both contextual memory and anxiety-like behaviors were significantly altered in GPR75 KO, suggesting that GPR75 plays a role in hippocampal activity.


Assuntos
Medo , Hipocampo , Receptores Acoplados a Proteínas G , Animais , Camundongos , Hipocampo/metabolismo , Ligantes , Camundongos Knockout , Proteômica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
3.
J Neurochem ; 158(2): 169-181, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33742683

RESUMO

Morphine withdrawal evokes neuronal apoptosis through mechanisms that are still under investigation. We have previously shown that morphine withdrawal increases the levels of pro-brain-derived neurotrophic factor (BDNF), a proneurotrophin that promotes neuronal apoptosis through the binding and activation of the pan-neurotrophin receptor p75 (p75NTR). In this work, we sought to examine whether morphine withdrawal increases p75NTR-driven signaling events. We employed a repeated morphine treatment-withdrawal paradigm in order to investigate biochemical and histological indicators of p75NTR-mediated neuronal apoptosis in mice. We found that repeated cycles of spontaneous morphine withdrawal promote an accumulation of p75NTR in hippocampal synapses. At the same time, TrkB, the receptor that is crucial for BDNF-mediated synaptic plasticity in the hippocampus, was decreased, suggesting that withdrawal alters the neurotrophin receptor environment to favor synaptic remodeling and apoptosis. Indeed, we observed evidence of neuronal apoptosis in the hippocampus, including activation of c-Jun N-terminal kinase (JNK) and increased active caspase-3. These effects were not seen in saline or morphine-treated mice which had not undergone withdrawal. To determine whether p75NTR was necessary in promoting these outcomes, we repeated these experiments in p75NTR heterozygous mice. The lack of one p75NTR allele was sufficient to prevent the increases in phosphorylated JNK and active caspase-3. Our results suggest that p75NTR participates in the neurotoxic and proinflammatory state evoked by morphine withdrawal. Because p75NTR activation negatively influences synaptic repair and promotes cell death, preventing opioid withdrawal is crucial for reducing neurotoxic mechanisms accompanying opioid use disorders.


Assuntos
Apoptose , Dependência de Morfina/patologia , Neurônios/patologia , Receptores de Fator de Crescimento Neural/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Alelos , Animais , Apoptose/fisiologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Caspase 3/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais
4.
Brain Behav Immun ; 89: 371-379, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717404

RESUMO

Reduced synaptodendritic complexity appears to be a key feature in human immunodeficiency virus (HIV)-associated neurological disorder (HAND). Viral proteins, and in particular the envelope protein gp120, play a role in the pathology of synapses. Gp120 has been shown to increase both in vitro and in vivo the proneurotrophin brain-derived neurotrophic factor, which promotes synaptic simplification through the activation of the p75 neurotrophin receptor (p75NTR). To provide evidence that p75NTR plays a role in gp120-mediated loss of synapses in vivo, we intercrossed gp120tg mice with p75NTR null mice and used molecular, histological and behavioral analyses to establish a link between p75NTR and gp120-mediated synaptic simplification. Synaptosomes obtained from the striatum of gp120tg mice exhibited a significant increase in p75NTR levels concomitantly to a decrease in synaptic markers such as TrkB and PSD95. Analysis of striatal dendritic spines by Golgi staining revealed that gp120tg mice display a reduced proportion of mushroom-type spines in addition to fewer spines overall, when compared to wild type or gp120tg lacking one or two p75NTR alleles. Moreover, removal of one p75NTR allele in gp120 transgenic mice abolished the gp120-driven impairment on a task of striatal-dependent motor learning. These data indicate that p75NTR could be a key player in HIV-mediated synaptic simplification in the striatum.


Assuntos
Infecções por HIV , Receptor de Fator de Crescimento Neural , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína gp120 do Envelope de HIV , Camundongos , Receptor de Fator de Crescimento Neural/metabolismo , Regulação para Cima
5.
Glia ; 67(9): 1719-1729, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31124192

RESUMO

The HIV-1 protein Tat is continually released by HIV-infected cells despite effective combination antiretroviral therapies (cART). Tat promotes neurotoxicity through enhanced expression of proinflammatory molecules from resident and infiltrating immune cells. These molecules include matrix metalloproteinases (MMPs), which are pathologically elevated in HIV, and are known to drive central nervous system (CNS) injury in varied disease settings. A subset of MMPs can activate G-protein coupled protease-activated receptor 1 (PAR-1), a receptor that is highly expressed on astrocytes. Although PAR-1 expression is increased in HIV-associated neurocognitive disorder (HAND), its role in HAND pathogenesis remains understudied. Herein, we explored Tat's ability to induce expression of the PAR-1 agonists MMP-3 and MMP-13. We also investigated MMP/PAR-1-mediated release of CCL2, a chemokine that drives CNS entry of HIV infected monocytes and remains a significant correlate of cognitive dysfunction in the era of cART. Tat exposure significantly increased the expression of MMP-3 and MMP-13. These PAR-1 agonists both stimulated the release of astrocytic CCL2, and both genetic knock-out and pharmacological inhibition of PAR-1 reduced CCL2 release. Moreover, in HIV-infected post-mortem brain tissue, within-sample analyses revealed a correlation between levels of PAR-1-activating MMPs, PAR-1, and CCL2. Collectively, these findings identify MMP/PAR-1 signaling to be involved in the release of CCL2, which may underlie Tat-induced neuroinflammation.


Assuntos
Astrócitos/metabolismo , Astrócitos/virologia , Quimiocina CCL2/metabolismo , Metaloproteinases da Matriz/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Adulto , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/virologia , Feminino , HIV-1 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
6.
J Neurovirol ; 25(3): 301-312, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30850975

RESUMO

Human immunodeficiency virus-1 (HIV) infection of the central nervous system damages synapses and promotes axonal injury, ultimately resulting in HIV-associated neurocognitive disorders (HAND). The mechanisms through which HIV causes damage to neurons are still under investigation. The cytoskeleton and associated proteins are fundamental for axonal and dendritic integrity. In this article, we review evidence that HIV proteins, such as the envelope protein gp120 and transactivator of transcription (Tat), impair the structure and function of the neuronal cytoskeleton. Investigation into the effects of viral proteins on the neuronal cytoskeleton may provide a better understanding of HIV neurotoxicity and suggest new avenues for additional therapies.


Assuntos
Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Citoesqueleto/virologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Neurônios/virologia , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia
7.
J Neurochem ; 146(5): 526-539, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29772059

RESUMO

The chemokine CCL5 prevents neuronal cell death mediated both by amyloid ß, as well as the human immunodeficiency virus viral proteins gp120 and Tat. Because CCL5 binds to CCR5, CCR3 and/or CCR1 receptors, it remains unclear which of these receptors plays a role in neuroprotection. Indeed, CCL5 also has neuroprotective activity in cells lacking these receptors. CCL5 may bind to a G-protein-coupled receptor 75 (GPR75), which encodes for a 540 amino-acid orphan receptor of the Gqα family. In this study, we have used SH-SY5Y human neuroblastoma cells to characterize whether CCL5 could activate a Gq signaling through GPR75. Both qPCR and flow cytometry show that these cells express GPR75 but do not express CCR5, CCR3 or CCR1 receptors. SY-SY5Y cells were then used to examine CCL5-mediated signaling. We report that CCL5 promotes a time- and concentration-dependent phosphorylation of protein kinase B (AKT), glycogen synthase kinase 3ß, and extracellular signal-regulated kinase (ERK) 1/2. Specific antagonists of CCR5, CCR3, and CCR1 did not prevent CCL5 from increasing phosphorylated AKT or ERK. Moreover, CCL5 promotes a time-dependent internalization of GPR75. Lastly, knocking down GPR75 expression by a CRISPR-Cas9 approach inhibited the ability of CCL5 to activate pERK in SH-SY5Y cells. Therefore, we propose that GPR75 is a novel receptor for CCL5 that could explain some of the pharmacological action of this chemokine. These findings may help in the development of small molecule GPR75 agonists that mimic CCL5. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Quimiocina CCL5/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Antineoplásicos/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Quimiocina CCL5/genética , Quimiocina CCL5/farmacologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Humanos , Mutagênese/genética , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Toxina Pertussis/farmacologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Linfócitos T , Tretinoína/farmacologia
8.
J Neurochem ; 141(4): 606-613, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28295345

RESUMO

The human immunodeficiency virus (HIV) envelope protein gp120 promotes axonal damage and neurite pruning, similar to that observed in HIV-positive subjects with neurocognitive disorders. Thus, gp120 has been used to examine molecular and cellular pathways underlying HIV-mediated neuronal dysfunction. Gp120 binds to tubulin beta III, a component of neuronal microtubules. Microtubule function, which modulates the homeostasis of neurons, is regulated by polymerization and post-translational modifications. Based on these considerations, we tested the hypothesis that gp120 induces dynamic instability of neuronal microtubules. We first observed that gp120 prevents the normal polymerization of tubulin in vitro. We then tested whether gp120 alters the post-translational modifications in tubulin by examining the ability of gp120 to change the levels of acetylated tubulin in primary rat neuronal cultures. Gp120 elicited a time-dependent decrease in tubulin acetylation that was reversed by Helix-A peptide, a compound that competitively displaces the binding of gp120 to neuronal microtubules. To determine whether post-translational modifications in tubulin also occur in vivo, we measured acetylated tubulin in the cerebral cortex of HIV transgenic rats (HIV-tg). We observed a decrease in tubulin acetylation in 5- and 9-month-old HIV-tg rats when compared to age-matched wild type. Neither changes in microglia morphology nor alterations in mRNA levels for interleukin-1ß and tumor necrosis factor α were detected in 5-month-old animals. Our findings propose neuronal microtubule instability as a novel mechanism of HIV neurotoxicity, without evidence of enhanced inflammation.


Assuntos
Proteína gp120 do Envelope de HIV/farmacologia , Proteína gp120 do Envelope de HIV/toxicidade , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Complexo AIDS Demência/patologia , Acetilação , Animais , Células Cultivadas , Humanos , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Masculino , Microtúbulos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
9.
J Neurochem ; 137(2): 287-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26826352

RESUMO

Human immunodeficiency virus-1 (HIV) promotes synaptic simplification and neuronal apoptosis, and causes neurological impairments termed HIV-associated neurological disorders. HIV-associated neurotoxicity may be brought about by acute and chronic mechanisms that still remain to be fully characterized. The HIV envelope glycoprotein gp120 causes neuronal degeneration similar to that observed in HIV-associated neurocognitive disorders subjects. This study was undertaken to discover novel mechanisms of gp120 neurotoxicity that could explain how the envelope protein promotes neurite pruning. Gp120 has been shown to associate with various intracellular organelles as well as microtubules in neurons. We then analyzed lysates of neurons exposed to gp120 with liquid chromatography mass spectrometry for potential protein interactors. We found that one of the proteins interacting with gp120 is tubulin ß-3 (TUBB3), a major component of neuronal microtubules. We then tested the hypothesis that gp120 binds to neuronal microtubules. Using surface plasmon resonance, we confirmed that gp120 binds with high affinity to neuronal-specific TUBB3. We have also identified the binding site of gp120 to TUBB3. We then designed a small peptide (Helix-A) that displaced gp120 from binding to TUBB3. To determine whether this peptide could prevent gp120-mediated neurotoxicity, we cross-linked Helix-A to mesoporous silica nanoparticles (Helix-A nano) to enhance the intracellular delivery of the peptide. We then tested the neuroprotective property of Helix-A nano against three strains of gp120 in rat cortical neurons. Helix-A nano prevented gp120-mediated neurite simplification as well as neuronal loss. These data propose that gp120 binding to TUBB3 could be another mechanism of gp120 neurotoxicity. We propose a novel direct mechanism of human immunodeficiency virus neurotoxicity. Our data show that the viral protein gp120 binds to neuronal specific tubulin ß-3 and blocks microtubule transport. Displacing gp120 from binding to tubulin by a small peptide prevents gp120-mediated neuronal loss. Our study reveals a novel target for developing adjunct therapies against viral infection that promotes neurocognitive disorders.


Assuntos
Sítios de Ligação/fisiologia , Proteína gp120 do Envelope de HIV/metabolismo , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Cromatografia Líquida , Embrião de Mamíferos , Proteína gp120 do Envelope de HIV/genética , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Ressonância de Plasmônio de Superfície
10.
Brain Behav Immun ; 54: 170-177, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26845379

RESUMO

Human immunodeficiency virus type 1 (HIV) infection of the brain produces cognitive and motor disorders. In addition, HIV positive individuals exhibit behavioral alterations, such as apathy, and a decrease in spontaneity or emotional responses, typically seen in anxiety disorders. Anxiety can lead to psychological stress, which has been shown to influence HIV disease progression. These considerations underscore the importance of determining if anxiety in HIV is purely psychosocial, or if by contrast, there are the molecular cascades associated directly with HIV infection that may mediate anxiety. The present study had two goals: (1) to determine if chronic exposure to viral proteins would induce anxiety-like behavior in an animal model and (2) to determine if this exposure results in anatomical abnormalities that could explain increased anxiety. We have used gp120 transgenic mice, which display behavior and molecular deficiencies similar to HIV positive subjects with cognitive and motor impairments. In comparison to wild type mice, 6 months old gp120 transgenic mice demonstrated an anxiety like behavior measured by open field, light/dark transition task, and prepulse inhibition tests. Moreover, gp120 transgenic mice have an increased number of spines in the amygdala, as well as higher levels of brain-derived neurotrophic factor and tissue plasminogen activator when compared to age-matched wild type. Our data support the hypothesis that HIV, through gp120, may cause structural changes in the amygdala that lead to maladaptive responses to anxiety.


Assuntos
Ansiedade/metabolismo , Ansiedade/virologia , Espinhas Dendríticas/patologia , Proteína gp120 do Envelope de HIV/biossíntese , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/psicologia , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/fisiopatologia , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Infecções por HIV/virologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Inibição Pré-Pulso
11.
J Neurosci ; 32(28): 9477-84, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22787033

RESUMO

The molecular mechanisms leading to synaptic simplification and neuronal apoptosis in human immunodeficiency virus type 1 (HIV-1)-positive subjects are unknown. The HIV protein gp120 reduced the length of neuronal processes similarly to the proneurotrophin pro-brain-derived neurotrophic factor (proBDNF). Intriguingly, the effects of both proBDNF and gp120 were blocked by inhibitors of the p75 neurotrophin receptor, suggesting that proBDNF and gp120 share a similar mechanism of neurotoxicity. Therefore, we tested the hypothesis that gp120 affects the release of proBDNF. Using rat primary neurons, we observed that gp120 promotes a time-dependent intracellular and extracellular accumulation of proBDNF concomitantly with a decrease in mature BDNF. A similar imbalance in the ratio proBDNF/mature BDNF was confirmed in postmortem brains of HIV-positive subjects cognitively impaired and motor impaired. Therefore, it is conceivable to formulate the hypothesis that HIV neurotoxicity includes a gp120-mediated alteration of BDNF processing. To determine the cellular mechanism whereby gp120 produces an accumulation of proBDNF, we examined the levels of intracellular and extracellular enzymes that proteolytically cleave proBDNF furin and tissue plasminogen, respectively. In rat neurons exposed to gp120, intracellular furin levels decreased before cell death, whereas tissue plasminogen changed only during apoptosis. Our data suggest that HIV, through gp120, reduces proBDNF processing by affecting furin levels, and therefore causes an altered balance between antiapoptotic and proapoptotic neurotrophins. Our studies identify a new mechanism that may explain how HIV promotes neuronal injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , HIV-1/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Adolescente , Adulto , Análise de Variância , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Encéfalo/virologia , Carbazóis/farmacologia , Células Cultivadas , Cerebelo/citologia , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/farmacologia , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/genética , Humanos , Alcaloides Indólicos/farmacologia , Masculino , Pessoa de Meia-Idade , Neuritos/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Fatores de Tempo
12.
Brain Behav Immun ; 34: 130-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23968971

RESUMO

Opioids have been shown to influence the immune system and to promote the expression of pro-inflammatory cytokines in the central nervous system. However, recent data have shown that activation of opioid receptors increases the expression and release of the neuroprotective chemokine CCL5 from astrocytes in vitro. To further define the interaction between CCL5 and inflammation in response to opioids, we have examined the effect of chronic morphine and morphine withdrawal on the in vivo expression of CCL5 as well as of pro-inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Rats undergoing a chronic morphine paradigm (10 mg/kg increasing to 30 mg/kg, twice a day for 5 days) showed a twofold increase of CCL5 protein and mRNA within the cortex and striatum. No changes were observed in the levels of IL-1ß and TNF-α. Naltrexone blocked the effect of morphine. A chronic morphine paradigm with no escalating doses (10 mg/kg, twice a day) did not alter CCL5 levels compared to saline-treated animals. On the contrary, rats undergoing spontaneous morphine withdrawal exhibited lower levels of CCL5 within the cortex as well as increased levels of pro-inflammatory cytokines and Iba-1 positive cells than saline-treated rats. Overall, these data suggest that morphine withdrawal may promote cytokines and other inflammatory responses that have the potential of exacerbating neuronal damage.


Assuntos
Encéfalo/metabolismo , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Inflamação/induzido quimicamente , Morfina/efeitos adversos , Animais , Masculino , Microglia/metabolismo , Morfina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias
13.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626635

RESUMO

Axonal degeneration and loss of synapses are often seen in different brain areas of people living with human immunodeficiency virus (HIV). Nevertheless, the underlying causes of the pathological alterations observed in these individuals are poorly comprehended, considering that HIV does not infect neurons. Experimental data have shown that viral proteins, including the envelope protein gp120, cause synaptic pathology followed by neuronal cell death. These neurotoxic effects on synapses could be the result of a variety of mechanisms that decrease synaptic plasticity. In this paper, we will briefly present new emerging concepts connected with the ability of gp120 to promote the degeneration of synapses by either directly damaging the axonal cytoskeleton and/or the indirect activation of the p75 neurotrophin receptor death domain in dendrites.


Assuntos
Infecções por HIV , Síndromes Neurotóxicas , Axônios/metabolismo , Morte Celular , Infecções por HIV/metabolismo , Humanos , Neurônios/metabolismo , Síndromes Neurotóxicas/patologia
14.
J Neurovirol ; 17(1): 58-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21165786

RESUMO

In the central nervous system, chemokines are primarily mediators of inflammatory processes. Their receptors, in particular, CXCR4 and CCR5, serve as co-factors along with CD4 that permit Human immunodeficiency virus-1 (HIV) infection. Moreover, experimental evidence has shown that CXCR4 and CCR5 mediate the neurotoxic effects of the HIV envelope protein gp120, suggesting that these receptors could also promote the neuropathogenesis observed in HIV-positive individuals. Therefore, a better understanding of the molecular mechanisms governing the expression of chemokine receptors in the brain may lead to improved therapies that reduce HIV neurotoxicity. This study presents evidence that the expression of chemokine receptors in the brain is modulated by two neurotrophins in an area-specific manner. This new evidence suggests that the neurotrophins may be an adjunct therapy to reduce HIV-mediated neuronal injury evoked by chemokine receptor activation.


Assuntos
Encéfalo/metabolismo , Infecções por HIV/metabolismo , HIV-1/patogenicidade , Fatores de Crescimento Neural/metabolismo , Animais , Encéfalo/virologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Proteína gp120 do Envelope de HIV/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/virologia , RNA Viral/análise , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo
15.
Pharmacol Res ; 64(4): 323-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21708254

RESUMO

Pharmacological regulation of gene expression was one of the top professional interests of Dr. Costa. He promoted the idea that drugs can improve the endogenous mechanisms of synaptic plasticity by modulating gene expression. In this article I reflect upon Dr. Costa's leadership in projects undertaken at FGIN that were aimed at elucidating how neurotransmitter receptor activation could affect brain function by modulating genes and their products. I will be presenting examples of how pharmacological tools can change gene expression. These include the ability of drugs of abuse to alter the synthesis of opioid peptides or an endogenous ligand for GABAA receptor. I will conclude with a brief summary of intriguing discoveries about the regulation of nerve growth factor (NGF) and its receptors by beta-receptor agonists, adrenal steroids and cytokines.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Neurofarmacologia/métodos , Agonistas Adrenérgicos beta/farmacologia , Animais , Citocinas/farmacologia , Glucocorticoides/farmacologia , Humanos , Drogas Ilícitas/farmacologia , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Peptídeos Opioides/genética , Peptídeos Opioides/metabolismo
16.
Pharmacol Res ; 64(4): 314-5, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21683792

RESUMO

This article describes briefly the history and activities of the Fidia-Georgetown Institute for the Neurosciences (FGIN), from its establishment in 1985 to its closure in 1994. It also provides a list of those colleagues and students who worked at FGIN and contributed to various research projects.


Assuntos
Academias e Institutos/história , Pesquisa Biomédica/história , Neurociências/história , Pesquisa Biomédica/educação , História do Século XX , Neurociências/educação , Estados Unidos
17.
Neurotox Res ; 39(6): 2098-2107, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34618322

RESUMO

Extracellular vesicles are heterogeneous cell-derived membranous structures of nanometer size that carry diverse cargoes including nucleic acids, proteins, and lipids. Their secretion into the extracellular space and delivery of their cargo to recipient cells can alter cellular function and intracellular communication. In this review, we summarize the role of extracellular vesicles in the disease pathogenesis of HIV-associated neurocognitive disorder (HAND) by focusing on their role in viral entry, neuroinflammation, and neuronal degeneration. We also discuss the potential role of extracellular vesicles as biomarkers of HAND. Together, this review aims to convey the importance of extracellular vesicles in the pathogenesis of HAND and foster interest in their role in neuroinflammatory diseases.


Assuntos
Complexo AIDS Demência/etiologia , Vesículas Extracelulares/patologia , Complexo AIDS Demência/diagnóstico , Complexo AIDS Demência/patologia , Humanos
18.
Neurotox Res ; 39(6): 1721-1731, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34613587

RESUMO

Human immunodeficiency virus (HIV)-associated cognitive disorders (HAND) is characterized by impaired motor and intellectual functions, as well as mood disorders. Brain-derived neurotrophic factor and its receptor TrkB (or NTRK2) mediate the efficacy of antidepressant drugs. Genomic studies of BDNF/TrkB have implicated common single-nucleotide polymorphisms in the pathology of depression. In the current study, we investigated whether single-nucleotide polymorphisms (SNPs) (rs1212171, rs1439050, rs1187352, rs1778933, rs1443445, rs3780645, rs2378672, and rs11140800) in the NTRK2 has a functional impact on depression in HIV-positive subjects. We have utilized the Central Nervous System (CNS) HIV Antiretroviral Therapy Effects Research (CHARTER) cohort. Our methods explored the univariate associations of these SNPs with clinical (current and lifetime) diagnosis of depression via chi-square. The distribution of alleles was significantly different for African-Americans and Caucasians (non-Hispanic) for several SNPs, so our regression analyses included both "statistical controls" for race group and models for each group separately. Finally, we applied a method of simultaneous analysis of associations, estimating the mutually shared information across a system of variables, separately by race group. Our results indicate that there is no significant association between clinical diagnosis of major depression and these SNPs for either race group in any analysis. However, we identified that the SNP associations varied by race group and sex.


Assuntos
Negro ou Afro-Americano/genética , Depressão/genética , Infecções por HIV/genética , Glicoproteínas de Membrana/genética , Receptor trkB/genética , População Branca/genética , Adolescente , Adulto , Idoso , Depressão/complicações , Feminino , Infecções por HIV/complicações , Infecções por HIV/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
19.
Glia ; 58(13): 1630-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20578038

RESUMO

A number of human immunodeficiency virus type-1 (HIV) positive subjects are also opiate abusers. These individuals are at high risk to develop neurological complications. However, little is still known about the molecular mechanism(s) linking opiates and HIV neurotoxicity. To learn more, we exposed rat neuronal/glial cultures prepared from different brain areas to opiate agonists and HIV envelope glycoproteins gp120IIIB or BaL. These strains bind to CXCR4 and CCR5 chemokine receptors, respectively, and promote neuronal death. Morphine did not synergize the toxic effect of gp120IIIB but inhibited the cytotoxic property of gp120BaL. This effect was blocked by naloxone and reproduced by the mu opioid receptor agonist DAMGO. To examine the potential mechanism(s) of neuroprotection, we determined the effect of morphine on the release of chemokines CCL5 and CXCL12 in neurons, astrocytes, and microglia cultures. CCL5 has been shown to prevent gp120BaL neurotoxicity while CXCL12 decreases neuronal survival. Morphine elicited a time-dependent release of CCL5 but failed to affect the release of CXCL12. This effect was observed only in primary cultures of astrocytes. To examine the role of endogenous CCL5 in the neuroprotective activity of morphine, mixed cerebellar neurons/glial cells were immunoneutralized against CCL5 prior to morphine and gp120 treatment. In these cells the neuroprotective effect of opiate agonists was blocked. Our data suggest that morphine may exhibit a neuroprotective activity against M-tropic gp120 through the release of CCL5 from astrocytes.


Assuntos
Astrócitos/efeitos dos fármacos , Quimiocina CCL5/metabolismo , Proteína gp120 do Envelope de HIV/efeitos adversos , Morfina/farmacologia , Entorpecentes/farmacologia , Analgésicos Opioides/farmacologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Citarabina/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Eur J Neurosci ; 32(4): 570-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20670282

RESUMO

Most early human immunodeficiency virus type 1 (HIV-1) strains are macrophage (M)-tropic HIV variants and use the chemokine receptor CCR5 for infection. Neuronal loss and dementia are less severe among individuals infected with M-tropic strains. However, after several years, the T-cell (T)-tropic HIV strain, which uses the CXCR4 variant, can emerge in conjunction with brain abnormalities, suggesting strain-specific differences in neuropathogenicity. The molecular and cellular mechanisms of such diversity remain under investigation. We have previously demonstrated that HIV envelope protein gp120IIIB, which binds to CXCR4, causes neuronal apoptosis in rodents. Thus, we have used a similar experimental model to examine the neurotoxic effects of M-tropic gp120BaL. gp120BaL was microinjected in the rat striatum and neuronal apoptosis was examined in the striatum, as well as in anatomically connected areas, such as the somatosensory cortex and the substantia nigra. gp120BaL promoted neuronal apoptosis and tissue loss that were confined to the striatum. Apoptosis was associated with microglial activation and increased levels of interleukin-1beta. Intriguingly, gp120BaL increased brain-derived neurotrophic factor in the striatum. Overall, our data show that gp120BaL demonstrates a different neuropathological profile than gp120IIIB. A better understanding of the pathogenic mechanisms mediating HIV neurotoxicity is vital for developing effective neuroprotective therapies against AIDS-associated dementia complex.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Isoformas de Proteínas/metabolismo , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/farmacologia , Humanos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA