Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Syst Evol Microbiol ; 67(10): 3982-3986, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28893364

RESUMO

A novel thermophilic, anaerobic, chemoheterotrophic, acetate-oxidizing and iron(III)-, manganese(IV)-, nitrate- and sulfate-reducing bacterium, designated strain ANAT, was isolated from a deep subsurface oil field in Japan (Yabase oil field, Akita Pref.). Cells of strain ANAT were Gram-stain-negative, non-motile, non-spore forming and slightly curved or twisted rods (1.5-5.0 µm long and 0.6-0.7 µm wide). The isolate grew at 25-60 °C (optimum 55 °C) and pH 6.0-8.0 (optimum pH 7.0). The isolate was capable of reducing iron(III), manganese(IV), nitrate and sulfate as an electron acceptor. The isolate utilized a limited range of electron donors such as acetate, lactate, pyruvate and yeast extract for iron reduction. Strain ANAT also used pyruvate, fumarate, succinate, malate, yeast extract and peptone for fermentative growth. The major respiratory quinones were menaquinone-7(H8) and menaquinone-8. The strain contained C18 : 0, iso-C18 : 0 and C16 : 0 as the major cellular fatty acids. The G+C content of the genomic DNA was 34.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain ANAT was closely related to Calditerrivibrio nitroreducens in the phylum Deferribacteres with low sequence similarities (89.5 %), and formed a distinct clade within the family Deferribacteraceae. In addition, the isolate is the first sulfate-reducing member of the phylum Deferribacteres. Based on phenotypic, chemotaxonomic and phylogenetic properties, a novel genus and species, Petrothermobacter organivorans gen. nov., sp. nov., is proposed for the isolate (type strain=ANAT= NBRC 112621T=DSM 105015T).


Assuntos
Bactérias Anaeróbias/classificação , Campos de Petróleo e Gás/microbiologia , Filogenia , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Compostos Férricos/metabolismo , Japão , Manganês/metabolismo , Nitratos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/química
2.
Int J Syst Evol Microbiol ; 66(11): 4873-4877, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27553654

RESUMO

A mesophilic, hydrogenotrophic methanogen, designated strain MobHT, was isolated from sediments derived from deep sedimentary, natural-gas-bearing aquifers in Japan. Strain MobHT utilized H2/CO2 or formate, but not ethanol, 1-propanol, 2-propanol, 2-butanol or cyclopentanol, for growth and methane production. In addition, acetate and tungsten were required for growth. Yeast extract stimulated the growth, but was not required. The cells were weakly motile with multiple flagella, presented as a curved-rod-shaped (0.8×2.0 µm) and occurred singly or in pairs. Strain MobHT grew at 15-40 °C (optimum 35 °C) and at pH 5.9-7.9 (optimum pH 7.0-7.5). The sodium chloride range for growth was 0-5.8 % (optimum 2 %). The G+C content of the genomic DNA was 37.6 mol%. In the phylogenetic tree based on the 16S rRNA gene sequences, strain MobHT clustered together with Methanomicrobium mobile (95.4 % in sequence similarity), and formed a distinct clade from Methanolacinia petrolearia SEBR 4847T (95.6 %) and Methanolacinia paynteri G-2000T (95.4 %). The two species of the genus Methanolacinia utilized 2-propanol, whereas strain MobHT and Methanomicrobium mobile, the sole species of the genus Methanomicrobium, do not. Based on phenotypic and phylogenetic features, we propose a novel species for the isolate with the name, Methanomicrobiumantiquum sp. nov. The type strain is MobHT (=DSM 21220T=NBRC 104160T).


Assuntos
Água Subterrânea/microbiologia , Methanomicrobiaceae/classificação , Gás Natural , Campos de Petróleo e Gás/microbiologia , Filogenia , Composição de Bases , DNA Arqueal/genética , Japão , Metano , Methanomicrobiaceae/genética , Methanomicrobiaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Int J Syst Evol Microbiol ; 64(Pt 6): 2089-2093, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24670897

RESUMO

A mesophilic, slightly halophilic, obligately methylotrophic, methanogenic archaeon, designated strain GTA13(T), was isolated from natural gas-bearing confined aquifers in the Minami-Kanto gas field, Japan. The cells were non-motile, slightly irregular cocci, 0.7-1.0 µm in diameter and occurred singly, in pairs or as small aggregates. The cells grew with tri- or dimethylamine but not with H2/CO2, formate, acetate, methanol or dimethyl sulphide. Vitamins, sodium and magnesium were required for growth. Optimal growth occurred at pH 7.0-7.5, 35 °C, 0.35-0.40 M NaCl and 15-50 mM MgCl2. The NaCl range for growth was 0.2-1.3 M. The DNA G+C content was 43.7 mol%. Strain GTA13(T) showed highest levels of 16S rRNA gene sequence similarity with Methanohalophilus portucalensis FDF-1(T) (96.4% sequence similarity) and Methanohalophilus halophilus DSM 3094(T) (96.0%). On the basis of physiological and phylogenetic features, strain GTA13(T) is considered to represent a novel species of the genus Methanohalophilus, for which the name Methanohalophilus levihalophilus sp. nov. is proposed. The type strain is GTA13(T) ( = NBRC 110099(T) = DSM 28452(T)). An emended description of the genus Methanohalophilus is also proposed.


Assuntos
Água Subterrânea/microbiologia , Methanosarcinaceae/classificação , Gás Natural/microbiologia , Filogenia , Composição de Bases , DNA Arqueal/genética , Japão , Metanol , Methanosarcinaceae/genética , Methanosarcinaceae/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Syst Appl Microbiol ; 47(4): 126515, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776610

RESUMO

A novel anaerobic, thermophilic bacterium of the class Atribacteria, strain M15T, was isolated from a high-temperature gas reservoir, Japan. Cells of strain M15T were gram-negative, short oval-shaped, and lacked flagella. Growth occurred at 45-75 °C (optimum 70-75 °C) and pH 6.5-8.5 (optimum pH 7.5-8.0) and was fast under optimal conditions (doubling time 11.4 h). Yeast extract was required for growth. Fermentative growth with glucose, arabinose, xylose, and cellobiose was observed. The major fermentative end products of glucose were acetate and hydrogen. The major cellular fatty acids were C16:0, iso-C15:0, and C18:0. The genomic G + C content was 46.0 mol%. Fluorescence and electron microscopy observations revealed the intracellular localization of genomic DNA surrounded by a membrane in the cells of strain M15T as reported in a sole validly described species of the class Atribacteria in the phylum Atribacterota, Atribacter laminatus strain RT761T, suggesting that the unique morphological traits are widely shared in this class. Phylogenetic analyses indicated that strain M15T belongs to a distinct family-level lineage in the class Atribacteria and shows low similarities to Atribacter laminatus strain RT761T (16S rRNA gene sequence identity of 90.1 %, average nucleotide identity [ANI] of 66.1 %, average amino acid identity [AAI] of 55.8 %). Phenotypic traits of strain M15T (thermophilic, fast-growing, relatively high G + C content, etc.) were clearly distinct from A. laminatus. Based on these phenotypic and genomic properties, we propose a novel genus and species, Atrimonas thermophila gen. nov., sp. nov. for strain M15T (=JCM39389T, =KCTC25731T) representing a novel family Atrimonadaceae fam., nov. in the class Atribacteria.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Japão , Temperatura Alta , Fermentação , Campos de Petróleo e Gás/microbiologia
5.
Int J Syst Evol Microbiol ; 63(Pt 2): 715-722, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22561588

RESUMO

A thermophilic and hydrogenotrophic methanogen, strain RMAS(T), was isolated from gas-associated formation water of a gas-producing well in a natural gas field in Japan. Strain RMAS(T) grew solely on H(2)/CO(2) but required Casamino acids, tryptone, yeast extract or vitamins for growth. Growth of strain RMAS(T) was stimulated by acetate. Cells were non-motile, straight rods (0.5×3.5-10.5 µm) and occurred singly or in pairs. Bundles of fimbriae occurred at both poles of cells and the cell wall was thick (approximately 21 nm, as revealed by ultrathin section electron microscopy). Strain RMAS(T) grew at 45-80 °C (optimum, 70 °C), at pH 5.8-8.7 (optimum, pH 6.9-7.7) and with 0.001-20 g NaCl l(-1) (optimum, 2.5 g NaCl l(-1)). Phylogenetic analysis revealed that Methanothermobacter thermautotrophicus ΔH(T) was most closely related to the isolate (95.7 % 16S rRNA gene sequence similarity). On the basis of morphological, phenotypic and phylogenetic characteristics, it is clear that strain RMAS(T) represents a novel species of the genus Methanothermobacter, for which we propose the name Methanothermobacter tenebrarum sp. nov. The type strain is RMAS(T) ( = DSM 23052(T) = JCM 16532(T) = NBRC 106236(T)).


Assuntos
Methanobacteriaceae/classificação , Campos de Petróleo e Gás/microbiologia , Filogenia , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Japão , Lipídeos/análise , Metano/metabolismo , Methanobacteriaceae/genética , Methanobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Gás Natural/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Environ Microbiol ; 13(8): 1995-2006, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20860731

RESUMO

The methanogenic communities and pathways in a high-temperature petroleum reservoir were investigated through incubations of the production water and crude oil, combined with radiotracer experiments and molecular biological analyses. The incubations were conducted without any substrate amendment and under high-temperature and pressurized conditions that mimicked the in situ environment (55°C, 5 MPa). Changes in methane and acetate concentrations during the incubations indicated stoichiometric production of methane from acetate. Rates of hydrogenotrophic methanogenesis measured using [(14)C]-bicarbonate were 42-68 times those of acetoclastic methanogenesis measured using [2-(14) C]-acetate, implying the dominance of methane production by syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the environment. 16S rRNA gene sequence analyses of the incubated production water showed bacterial communities dominated by the genus Thermacetogenium, known as a thermophilic syntrophic acetate-oxidizing bacterium, and archaeal communities dominated by thermophilic hydrogenotrophic methanogens belonging to the genus Methanothermobacter. Furthermore, group-specific real-time PCR assays revealed that 16S rRNA gene copy numbers of the hydrogenotrophic methanogens affiliated with the order Methanobacteriales were almost identical to those of archaeal 16S rRNA genes. This study demonstrates that syntrophic acetate oxidation is the main methanogenic pathway in a high-temperature petroleum reservoir.


Assuntos
Acetatos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Temperatura Alta , Metano/biossíntese , Campos de Petróleo e Gás/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Microbiologia Ambiental , Japão , Dados de Sequência Molecular , Petróleo/metabolismo , Filogenia , Pressão , RNA Ribossômico 16S
7.
Sci Rep ; 10(1): 19124, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154519

RESUMO

H2 is an important fermentation intermediate in anaerobic environments. Although H2 occurs at very low partial pressures in the environments, the culture and isolation of H2-utilizing microorganisms is usually carried out under very high H2 pressures, which might have hampered the discovery and understanding of microorganisms adapting to low H2 environments. Here we constructed a culture system designated the "iron corrosion-assisted H2-supplying (iCH) system" by connecting the gas phases of two vials (one for the iron corrosion reaction and the other for culturing microorganisms) to achieve cultures of microorganisms under low H2 pressures. We conducted enrichment cultures for methanogens and acetogens using rice paddy field soil as the microbial source. In the enrichment culture of methanogens under canonical high H2 pressures, only Methanobacterium spp. were enriched. By contrast, Methanocella spp. and Methanoculleus spp., methanogens adapting to low H2 pressures, were specifically enriched in the iCH cultures. We also observed selective enrichment of acetogen species by the iCH system (Acetobacterium spp. and Sporomusa spp.), whereas Clostridium spp. predominated in the high H2 cultures. These results demonstrate that the iCH system facilitates culture of anaerobic microorganisms under low H2 pressures, which will enable the selective culture of microorganisms adapting to low H2 environments.

8.
Science ; 354(6309): 222-225, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27738170

RESUMO

Coal-bed methane is one of the largest unconventional natural gas resources. Although microbial activity may greatly contribute to coal-bed methane formation, it is unclear whether the complex aromatic organic compounds present in coal can be used for methanogenesis. We show that deep subsurface-derived Methermicoccus methanogens can produce methane from more than 30 types of methoxylated aromatic compounds (MACs) as well as from coals containing MACs. In contrast to known methanogenesis pathways involving one- and two-carbon compounds, this "methoxydotrophic" mode of methanogenesis couples O-demethylation, CO2 reduction, and possibly acetyl-coenzyme A metabolism. Because MACs derived from lignin may occur widely in subsurface sediments, methoxydotrophic methanogenesis would play an important role in the formation of natural gas not limited to coal-bed methane and in the global carbon cycle.


Assuntos
Carvão Mineral/microbiologia , Metano/metabolismo , Methanosarcinales/metabolismo , Acetilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Éteres de Hidroxibenzoatos/metabolismo , Metanol/metabolismo , Methanosarcinales/enzimologia , Metilação , Oxirredução , Traçadores Radioativos
9.
Microbes Environ ; 26(4): 301-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21685714

RESUMO

We developed a simple, less laborious method to cultivate and isolate obligate anaerobic microorganisms using a six-well plate together with the AnaeroPack System, designated as the six-well plate method. The cultivation efficiency of this method, based on colony-forming units, colony formation time, and colony size, was evaluated with four authentic obligate anaerobes (two methanogenic archaea and two sulfate-reducing bacteria). The method was found to be comparable to or even better than the roll tube method, a technique that is commonly used at present for the cultivation of obligate anaerobes. Further experiments using 21 representative obligate anaerobes demonstrated that all examined anaerobes (11 methanogens, 5 sulfate- or thiosulfate-reducing bacteria, and 5 syntrophs) could form visible colonies on the six-well plate and that these colonies could be successfully subcultured in fresh liquid media. Using this method, an unidentified sulfate-reducing bacterium was successfully isolated from an environmental sample.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Técnicas Microbiológicas/métodos , Anaerobiose , Contagem de Colônia Microbiana
10.
Microbes Environ ; 26(4): 367-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21791886

RESUMO

Several fungi in the Aspergillus section Flavi have been widely used for fermentative food production, while some related species in the section are known to produce mycotoxin(s) that causes mycotic diseases. Common evolutionary markers, such as rRNA gene sequences and their internal transcribed spacers, cannot differentiate these non-aflatoxin-producing species from aflatoxin producers. Multilocus sequence analysis (MLSA) based on four aflatoxin biosynthetic genes encoding aflR, aflT, norA, and vbs, which are more variable nucleotide sequences than rRNA genes, can distinguish safe koji molds, A. oryzae and A. sojae, from aflatoxin-producing strains, A. flavus, A. toxicarius and A. parasiticus.


Assuntos
Aflatoxinas/biossíntese , Aspergillus/classificação , Aspergillus/genética , Vias Biossintéticas/genética , Genes Fúngicos , Tipagem de Sequências Multilocus/métodos , Aspergillus/metabolismo , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , Genótipo , Dados de Sequência Molecular , Análise de Sequência de DNA
11.
Int J Syst Evol Microbiol ; 59(Pt 4): 714-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19329594

RESUMO

A mesophilic, methylotrophic methanogen, strain MobM(T), was isolated from a natural gas field in Japan. Strain MobM(T) grew on methanol and methylamines, but not on H(2)/CO(2), formate, acetate or dimethyl sulfide. The cells were motile, irregular cocci (diameter, 0.9-1.2 microm) and occurred singly, in pairs, as tetracocci or (occasionally) as aggregates. Strain MobM(T) grew at 9-37 degrees C (optimally at 30 degrees C) and at pH 6.1-7.8 (optimally at pH 6.5). Sodium and magnesium were required for growth, at 0.1-1.0 M Na(+) (optimally at 0.35 M) and 10-400 mM Mg(2+) (optimally at 15-25 mM). The G+C content of the genomic DNA was 42.4 mol%. 16S rRNA gene sequencing revealed that the isolate is a member of the genus Methanolobus, but distinct from its closest neighbours, Methanolobus tindarius DSM 2278(T) (sequence similarity, 98.0 %) and Methanolobus vulcani DSM 3029(T) (98.1 %). On the basis of phenotypic and phylogenetic features of MobM(T), it is clear that this strain represents a novel species of the genus Methanolobus, for which the name Methanolobus profundi sp. nov. is proposed. The type strain is MobM(T) (=DSM 21213(T)=NBRC 104158(T)).


Assuntos
Sedimentos Geológicos/microbiologia , Metano/metabolismo , Methanosarcinaceae/classificação , Methanosarcinaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Japão , Magnésio/metabolismo , Metanol/metabolismo , Methanosarcinaceae/genética , Methanosarcinaceae/metabolismo , Metilaminas/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Sódio/metabolismo
12.
FEMS Microbiol Lett ; 297(1): 31-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19486160

RESUMO

Uncultured archaeal anaerobic methanotrophs (ANMEs) are known to operate the anaerobic oxidation of methane process, an important sink for the greenhouse gas methane in natural environments. In this study, we designed 16S rRNA gene-specific primers for each of the phylogenetic groups of ANMEs (ANME-1, Guaymas Basin hydrothermal sediment clones group within the ANME-1, ANME-2a, ANME-2b, ANME-2c and ANME-3) based on previously reported sequences. The newly designed primers were used for the detection of the various groups of ANMEs in the sulphate-limited anaerobic environmental samples, i.e. methanogenic sludges, rice field soils, lotus field sediments and natural gas fields. The ANME 16S rRNA gene sequences were detected only in a natural gas field sample among the environments examined in this study and were of the ANME-1 and -2c groups. In addition, the quantitative real-time PCR analysis using the designed primers showed that abundances of ANME-1 and -2c were estimated to be <0.02% of the total prokaryotic 16S rRNA gene community. The newly designed ANME group-specific primers in this study may be useful to survey the distribution and quantitative determination of ANMEs.


Assuntos
Archaea/isolamento & purificação , Primers do DNA/genética , Microbiologia Ambiental , Metano/metabolismo , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Anaerobiose , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Processos Autotróficos , DNA Arqueal/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia
13.
Extremophiles ; 11(3): 453-61, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17265161

RESUMO

Microbial diversity and methanogenic potential in formation water samples from a dissolved-in-water type gas field were investigated by using 16S rRNA gene libraries and culture-based methods. Two formation water samples (of 46 and 53 degrees C in temperature) were obtained from a depth of 700 to 800 m. Coenzyme F(420)-autofluorescence indicated that 10(3)-10(4) cells per ml of active methanogens were present, accounting for at least 10% of the total cell count. The 16S rRNA gene sequence analysis indicated that the diversity of Archaea and Bacteria of the two samples was quite limited; i.e., the archaeal libraries were dominated by the sequences related to Methanobacterium formicicum and Methanothermobacter thermautotrophicus, and the bacterial libraries were dominated by the sequences related to Hydrogenophilus and Deferribacter. Of the methanogenic substrates tested using the formation water-based medium, only H(2)-CO(2) gave rise to methane formation. Those dominant archaeal and bacterial genera have the potential to use hydrogen for growth at the in situ temperatures, suggesting that the formation water of the Pliocene strata in the gas field has been provided with hydrogen, probably from underneath the strata, and thus on-going active methanogenesis has been occurring to date.


Assuntos
Archaea/metabolismo , Metano/metabolismo , Archaea/classificação , Archaea/genética , Sequência de Bases , Primers do DNA , Temperatura Alta , Japão , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA