Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163218

RESUMO

Shape-Memory Polymers (SMPs) are considered a kind of smart material able to modify size, shape, stiffness and strain in response to different external (heat, electric and magnetic field, water or light) stimuli including the physiologic ones such as pH, body temperature and ions concentration. The ability of SMPs is to memorize their original shape before triggered exposure and after deformation, in the absence of the stimulus, and to recover their original shape without any help. SMPs nanofibers (SMPNs) have been increasingly investigated for biomedical applications due to nanofiber's favorable properties such as high surface area per volume unit, high porosity, small diameter, low density, desirable fiber orientation and nanoarchitecture mimicking native Extra Cellular Matrix (ECM). This review focuses on the main properties of SMPs, their classification and shape-memory effects. Moreover, advantages in the use of SMPNs and different biomedical application fields are reported and discussed.


Assuntos
Nanofibras/uso terapêutico , Polímeros/farmacologia , Materiais Inteligentes/química , Animais , Materiais Biocompatíveis/química , Engenharia Biomédica/métodos , Engenharia Biomédica/tendências , Humanos , Nanofibras/química , Polímeros/química , Polímeros/uso terapêutico , Materiais Inteligentes/farmacologia , Materiais Inteligentes/uso terapêutico , Alicerces Teciduais/química
2.
Int J Mol Sci ; 20(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835390

RESUMO

Chitosan nanoparticles (CS NPs) showed promising results in drug, vaccine and gene delivery for the treatment of various diseases. The considerable attention towards CS was owning to its outstanding biological properties, however, the main challenge in the application of CS NPs was faced during their size-controlled synthesis. Herein, ionic gelation reaction between CS and sodium tripolyphosphate (TPP), a widely used and safe CS cross-linker for biomedical application, was exploited by a microfluidic approach based on a staggered herringbone micromixer (SHM) for the synthesis of TPP cross-linked CS NPs (CS/TPP NPs). Screening design of experiments was applied to systematically evaluate the main process and formulative factors affecting CS/TPP NPs physical properties (mean size and size distribution). Effectiveness of the SHM-assisted manufacturing process was confirmed by the preliminary evaluation of the biological performance of the optimized CS/TPP NPs that were internalized in the cytosol of human mesenchymal stem cells through clathrin-mediated mechanism. Curcumin, selected as a challenging model drug, was successfully loaded into CS/TPP NPs (EE% > 70%) and slowly released up to 48 h via the diffusion mechanism. Finally, the comparison with the conventional bulk mixing method corroborated the efficacy of the microfluidics-assisted method due to the precise control of mixing at microscales.


Assuntos
Quitosana , Curcumina , Portadores de Fármacos , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais/metabolismo , Nanopartículas , Polifosfatos , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Polifosfatos/química , Polifosfatos/farmacocinética , Polifosfatos/farmacologia
3.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087241

RESUMO

Bronchiolitis obliterans syndrome (BOS), caused by lung allograft-derived mesenchymal cells' abnormal proliferation and extracellular matrix deposition, is the main cause of lung allograft rejection. In this study, a mild one-step ionotropic gelation method was set up to nanoencapsulate the everolimus, a key molecule in allograft organ rejection prevention, into hyaluronic acid-decorated chitosan-based nanoparticles. Rationale was the selective delivery of everolimus into lung allograft-derived mesenchymal cells; these cells are characterized by the CD44-overexpressing feature, and hyaluronic acid has proven to be a natural selective CD44-targeting moiety. The optimal process conditions were established by a design of experiment approach (full factorial design) aiming at the control of the nanoparticle size (≤200 nm), minimizing the size polydispersity (PDI 0.171 ± 0.04), and at the negative ζ potential maximization (-30.9 mV). The everolimus was successfully loaded into hyaluronic acid-decorated chitosan-based nanoparticles (95.94 ± 13.68 µg/100 mg nanoparticles) and in vitro released in 24 h. The hyaluronic acid decoration on the nanoparticles provided targetability to CD44-overexpressing mesenchymal cells isolated from bronchoalveolar lavage of BOS-affected patients. The mesenchymal cells' growth tests along with the nanoparticles uptake studies, at 37 °C and 4 °C, respectively, demonstrated a clear improvement of everolimus inhibitory activity when it is encapsulated in hyaluronic acid-decorated chitosan-based nanoparticles, ascribable to their active uptake mechanism.


Assuntos
Antineoplásicos/administração & dosagem , Quitosana/análogos & derivados , Sistemas de Liberação de Medicamentos , Everolimo/administração & dosagem , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/análogos & derivados , Nanopartículas/química , Adulto , Antineoplásicos/farmacocinética , Linhagem Celular , Everolimo/farmacocinética , Fibroblastos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/ultraestrutura
4.
Int J Mol Sci ; 19(8)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082640

RESUMO

Selectively targeted nanoscale drug delivery systems have recently emerged as promising intravenously therapeutic option for most chronic joint diseases. Here, a newly synthetized dodecapeptide (GE11)-polylactide-co-glycolide (PLGA)-based conjugate was used to prepare smart nanoparticles (NPs) intended for intra-articular administration and for selectively targeting Epidermal Growth Factor Receptor (EGFR). GE11-PLGA conjugate-based NPs are specifically uptaken by EGFR-overexpressed fibroblast; such as synoviocytes; which are the primarily cellular component involved in the development of destructive joint inflammation. The selective uptake could help to tune drug effectiveness in joints and to decrease local and systemic side effects. Dexamethasone (DXM) is a glucorticoid drug commonly used in joint disease treatment for both systemic and local administration route. In the present research; DXM was efficiently loaded into GE11-PLGA conjugate-based NPs through an eco-friendly nanoprecipitation method set up for this purpose. DXM loaded GE11-PLGA conjugate-based NPs revealed satisfactory ex vivo cytocompatibility; with proper size (≤150 nm) and good dimensional stability in synovial fluid. Intra-articular formulation was developed embedding DXM loaded GE11-PLGA conjugate-based NPs into thermosetting chitosan-based hydrogel; forming a biocompatible composite hydrogel able to quickly turn from liquid state into gel state at physiological temperature; within 15 min. Moreover; the use of thermosetting chitosan-based hydrogel extends the local release of active agent; DXM.


Assuntos
Dexametasona/química , Ácido Láctico/química , Nanopartículas/química , Peptídeos/química , Ácido Poliglicólico/química , Animais , Quitosana/química , Receptores ErbB/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
5.
J Microencapsul ; 33(8): 750-762, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27845595

RESUMO

The aim of this work was the assessment of the "in vivo" immune response of a poly(lactide-co-glycolide)-based nanoparticulate adjuvant for a sub-unit vaccine, namely, a purified recombinant collagen-binding bacterial adhesion fragment (CNA19), against Staphylococcus aureus-mediated infections. "In vivo" immunogenicity studies were performed on mice: immunisation protocols encompassed subcutaneous and intranasal administration of CNA19 formulated as nanoparticles (NPs) and furthermore, CNA19-loaded NPs formulated in a set-up thermosetting chitosan-ß-glycerolphosphate (chitosan-ß-GP) solution for intranasal route in order to extend antigen exposure to nasal mucosa. CNA19 loaded NPs (mean size of about 195 nm, 9.04 ± 0.37µg/mg as CNA19 loading capacity) confirmed as suitable vaccine for subcutaneous administration with a more pronounced adjuvant effect (about 3-fold higher) with respect to aluminium, recognised as "reference" adjuvant. CNA19 loaded NPs formulated in an optimised thermogelling chitosan-ß-GP solution showed promising results for eliciting an effective humoral response and a good chance as intranasal boosting dose.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/administração & dosagem , Staphylococcus aureus/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Administração Intranasal , Animais , Feminino , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/farmacologia , Vacinas Antiestafilocócicas/uso terapêutico , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/farmacologia , Vacinas Sintéticas/uso terapêutico
6.
AAPS PharmSciTech ; 16(5): 1129-39, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25700978

RESUMO

A stability study was performed on ivermectin (IVM)-loaded biodegradable microparticles intended for injection in dogs. The rational was to evaluate the performances upon irradiation of a drug, such as IVM, with a few criticalities with respect to its stability, and toxicity. The goal was to provide valuable information for pharmaceutical scientists and manufacturers working in the veterinary area. The microspheres based on poly(D,L-lactide) and poly-(ε-caprolactone) and loaded with IVM and with the addition of alpha-tocopherol (TCP) as antioxidant were prepared by the emulsion solvent evaporation method and sterilized by gamma irradiation. Microsphere characterization in term of size, shape, polymer, and IVM stability upon irradiation was performed. The results show that the type of polymer significantly affects microsphere characteristics and performances. Moreover, suitably stable formulations can be achieved only by TCP addition.


Assuntos
Antiparasitários/química , Portadores de Fármacos , Ivermectina/química , Poliésteres/química , Drogas Veterinárias/química , Antioxidantes/química , Antiparasitários/efeitos da radiação , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes/química , Raios gama , Ivermectina/efeitos da radiação , Microesferas , Modelos Químicos , Solubilidade , Drogas Veterinárias/efeitos da radiação , alfa-Tocoferol/química
7.
J Microencapsul ; 30(6): 559-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23570546

RESUMO

INTRODUCTION: The goal of the present work was to evaluate and discuss vibration nozzle microencapsulation (VNM) technology combined to lyophilization, for the microencapsulation of a hydrophilic model molecule into a hydrophilic polymer. MATERIALS AND METHODS: Fluorescein-loaded alginate microparticles prepared by VNM and emulsion phase inversion microencapsulation (EPIM) were lyophilized. Morphology, particle size distribution, lyophilized microspheres stability upon rehydration, drug loading and in vitro release were evaluated. RESULTS AND DISCUSSION: Well-formed microspheres were obtained by the VNM technique, with higher yields of production (93.3-100%) and smaller particle size (d50138.10-158.00) than the EPIM microspheres. Rehydration upon lyophilization occurred in 30 min maintaining microsphere physical integrity. Fluorescein release was always faster from the microspheres obtained by VNM (364 h) than from those obtained by EPIM (504 h). CONCLUSION: The results suggest that VNM is a simple, easy to be scaled-up process suitable for the microencapsulation hydrophilic drugs.


Assuntos
Alginatos/química , Emulsões/química , Fluoresceína/administração & dosagem , Composição de Medicamentos/métodos , Liofilização , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Microesferas , Tamanho da Partícula
8.
Drug Deliv Transl Res ; 13(2): 593-607, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35978259

RESUMO

This study is a proof of concept performed to evaluate process parameters affecting shape memory effect of copolymer poly-L-lactide-co-poly-ε-caprolactone (PLA:PCL) 70:30 ratio based nanofibrous scaffolds. A design of experiment (DOE) statistical approach was used to define the interaction between independent material and process variables related to electrospun scaffold manufacturing, such as polymer solution concentration (w/v%), spinning time (min), and needle size (Gauge), and their influence on Rf% (ability of the scaffold to maintain the induced temporary shape) and Rr% (ability of the scaffold to recover its original shape) outputs. A mathematical model was obtained from DOE useful to predict scaffold Rf% and Rr% values. PLA-PCL 15% w/v, 22G needle, and 20-min spinning time were selected to confirm the data obtained from theoretical model. Subsequent morphological (SEM), chemical-physical (GPC and DSC), mechanical (uniaxial tensile tests), and biological (cell viability and adhesion) characterizations were performed.


Assuntos
Nanofibras , Alicerces Teciduais , Engenharia Tecidual , Poliésteres , Polímeros
9.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35056160

RESUMO

Nanotechnology offers advanced biomedical tools for diagnosis and drug delivery, stressing the value of investigating the mechanisms by which nanocarriers interact with the biological environment. Herein, the cellular response to CD44-targeted nanoparticles (NPs) was investigated. CD44, the main hyaluronic acid (HA) receptor, is widely exploited as a target for therapeutic purposes. HA NPs were produced by microfluidic platform starting from HA with different molecular weights (Mw, 280, 540, 820 kDa) by polyelectrolyte complexation with chitosan (CS). Thanks to microfluidic technology, HA/CS NPs with the same physical features were produced, and only the effects of HA Mw on CD44-overexpressing cells (human mesenchymal stem cells, hMSCs) were studied. This work provides evidence of the HA/CS NPs biocompatibility regardless the HA Mw and reveals the effect of low Mw HA in improving the cell proliferation. Special attention was paid to the endocytic mechanisms used by HA/CS NPs to enter hMSCs. The results show the notable role of CD44 and the pronounced effect of HA Mw in the NPs' internalization. HA/CS NPs uptake occurs via different endocytic pathways simultaneously, and most notably, NPs with 280 kDa HA were internalized by clathrin-mediated endocytosis. Instead, NPs with 820 kDa HA revealed a greater contribution of caveolae and cytoskeleton components.

10.
J Pharm Pharmacol ; 74(1): 57-66, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34402908

RESUMO

OBJECTIVES: This aimed at the design and production of engineered 3D scaffold prototypes using a natural polymeric bioink made of chitosan and poly-γ-glutamic acid with a specific focus on 3D-bioprinting process and on 3D framework geometry. METHODS: Prototypes were produced using a 3D bioprinter exploiting layer-by-layer deposition technology. The 3D scaffold prototypes were fully characterized concerning pore size and size distribution, stability in different experimental conditions, swelling capability, and human dermal fibroblasts viability. KEY FINDINGS: Hexagonal framework combined with biopaper allowed stabilizing the 3-layers structure during process manufacturing and during incubation in cell culture conditions. The stability of 3-layers structure was well preserved for 48 h. Crosslinking percentages of 2-layers and 3-layers prototype were 88.2 and 68.39, respectively. The swelling study showed a controlled swelling capability for 2-layers and 3-layers prototype, ∼5%. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results showed good biocompatibility of 3-layers prototype and their suitability for preserving 48 h cell viability in 3D cultures. Moreover, a significant increment of absorbance value was measured after 48 h, demonstrating cell growth. CONCLUSIONS: Bioink obtained combining chitosan and poly-γ-glutamic acid represents a good option for 3D bioprinting. A stable 3D structure was realized by layer-by-layer deposition technology; compared with other papers, the present study succeeded in using medical healthcare-grade polymers, no-toxic crosslinker, and solvents according to ICH Topic Q3C (R4).


Assuntos
Bioimpressão/métodos , Quitosana/farmacologia , Ácido Poliglutâmico/análogos & derivados , Impressão Tridimensional , Alicerces Teciduais , Materiais Biocompatíveis/farmacologia , Produtos Biológicos/farmacologia , Regeneração Tecidual Guiada/métodos , Humanos , Hidrogéis/farmacologia , Ácido Poliglutâmico/farmacologia , Engenharia Tecidual/métodos
11.
Int J Pharm ; 596: 120198, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540017

RESUMO

Polymeric tubular vascular grafts represent a likely alternative to autologous vascular grafts for treating peripheral artery occlusive disease. This preliminary research study applied cutting-edge electrospinning technique for manufacturing prototypes with diameter ≤ 6 mm and based on biocompatible and biodegradable polymers such as polylactide-polycaprolactone, polylactide-co-glycolide and polyhydroxyethylmethacrylate combined in different design approaches (layering and blending). Samples were characterized about fiber morphology, diameter, size distribution, porosity, fluid uptake capability, and mechanical properties. Biocompatibility and cell interaction were evaluated by in vitro test. Goal of this preliminary study was to discriminate among the prototypes and select which composition and design approach could better suit tissue regeneration purposes. Results showed that electrospinning technique is suitable to obtain grafts with a diameter < 6 mm and thickness between 140 ± 7-175 ± 4 µm. Scanning electron microscopy analysis showed fibers with suitable micrometric diameters and pore size between 5 and 35 µm. polyhydroxyethylmethacrylate provided high hydrophilicity (≃ 100°) and optimal cell short term proliferation (cell viability ≃ 160%) in accordance with maximum fluid uptake ability (300-350%). Moreover, addition of polyhydroxyethylmethacrylate lowered suture retention strength at value < 1 N. Prototypes obtaining combining polylactide-co-glycolide and polylactide-coglycolide/ polyhydroxyethylmethacrylate with polylactide-polycaprolactone in a bilayered structure showed optimal mechanical behavior resembling native bovine vessel.


Assuntos
Nanofibras , Alicerces Teciduais , Animais , Artérias , Materiais Biocompatíveis , Prótese Vascular , Bovinos , Poliésteres , Polímeros , Porosidade , Engenharia Tecidual
12.
Pharmaceutics ; 13(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34683858

RESUMO

Hyaluronic acid-based nanoparticles (HA NPs) can be used to deliver a protein cargo to cells overexpressing HA receptors such as CD44 since they combine the low toxicity of the carrier and the retention of the protein integrity with the receptor-mediated internalization. HA properties play a crucial but sometimes unclear role in managing the formation and stability of the meshwork, cell interactions, and ultimately the protein entrapment efficacy. Nowadays, microfluidic is an innovative technology that allows to overcome limits linked to the NPs production, guaranteeing reproducibility and control of individual batches. Taking advantage of this technique, in this research work, the role of HA weight average molecular weight (Mw) in NPs formation inside a microfluidic device has been specifically faced. Based on the relationship between polymer Mw and solution viscosity, a methodological approach has been proposed to ensure critical quality attributes (size of 200 nm, PDI ≤ 0.3) to NPs made by HA with different Mw (280, 540, 710 and 820 kDa). The feasibility of the protein encapsulation was demonstrated by using Myoglobin, as a model neutral protein, with an encapsulation efficiency always higher than 50%. Lastly, all NPs samples were successfully internalized by CD44-expressing cells.

13.
Polymers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202454

RESUMO

This work aimed at formulating tubular grafts electrospun with a size < 6 mm and incorporating vancomycin as an antimicrobial agent. Compared to other papers, the present study succeeded in using medical healthcare-grade polymers and solvents permitted by ICH Topic Q3C (R4). Vancomycin (VMC) was incorporated into polyester synthetic polymers (poly-L-lactide-co-poly-ε-caprolactone and poly lactide-co-glycolide) using permitted solvents; moreover, a surfactant was added to the formulation in order to avoid the precipitation of VMC on fiber surface. A preliminary preformulation study was carried out to evaluate solubility of VMC in different aqueous and organic solvents and its stability. To reduce size of fibers and their orientation, we studied a solvent system based on methylene chloride and acetone (DCM/acetone), at different ratios (80:20, 70:30, and 60:40). Considering conductivity of solutions and their spinnability, solvent system at a 80:20 ratio was selected for the study. SEM images demonstrated that size of fibers, their distribution, and their orientation were affected by the incorporation of VMC and surfactant into polymer solution. Surfactant allowed for the reduction of precipitates of VMC on fiber surface, which are responsible of the high burst release in the first six hours; the release was mainly dependent on graft structure porosity, number of pores, and graft absorbent capability. A controlled release of VMC was achieved, covering a period from 96 to 168 h as a function of composition and structure; the concentration of VMC was significantly beyond VMC minimum inhibitory concentration (MIC, 2 ug/mL). These results indicated that the VMC tubular electrospun grafts not only controlled the local release of VMC, but also avoided onset of antibiotic resistance.

14.
Pharmaceutics ; 13(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34575417

RESUMO

Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.

15.
Pharmaceutics ; 12(5)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455714

RESUMO

Poly(methyl-methacrylate) (PMMA) is a biocompatible and non-biodegradable polymer widely used as biomedical material. PMMA microcapsules with suitable dimension and porosity range are proposed to encapsulate live cells useful for tissue regeneration purposes. The aim of this work was to evaluate the feasibility of producing cell-loaded PMMA microcapsules through "high efficiency vibrational technology" (HEVT). Preliminary studies were conducted to set up the process parameters for PMMA microcapsules production and human dermal fibroblast, used as cell model, were encapsulated in shell/core microcapsules. Microcapsules morphometric analysis through optical microscope and scanning electron microscopy highlighted that uniform microcapsules of 1.2 mm with circular surface pores were obtained by HEVT. Best process conditions used were as follows: frequency of 200 Hz, voltage of 750 V, flow rate of core solution of 10 mL/min, and flow rate of shell solution of 0.5 bar. Microcapsule membrane allowed permeation of molecules with low and medium molecular weight up to 5900 Da and prevented diffusion of high molecular weight molecules (11,000 Da). The yield of the process was about 50% and cell encapsulation efficiency was 27% on total amount. The cell survived and growth up to 72 h incubation in simulated physiologic medium was observed.

16.
Pharmaceutics ; 12(3)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183027

RESUMO

In this study, an innovative microfluidics-based method was developed for one-step synthesis of hyaluronic acid (HA)-based nanoparticles (NPs), by exploiting polyelectrolytic interactions between HA and chitosan (CS), in order to improve reliability, reproducibility and possible scale-up of the NPs preparation. The on-chip synthesis, using a staggered herringbone micromixer, allowed to produce HA/CS NPs with tailored-made size and suitable for both parenteral (117.50 ± 4.51 nm) and loco-regional (349.15 ± 38.09 nm) administration, mainly composed by HA (more than 85% wt) with high negative surface charge (< -20 mV). HA/CS NPs were successfully loaded with a challenging water-insoluble molecule, Everolimus (EVE), an FDA- and EMA-approved anticancer drug able to lead to cell cycle arrest, reduced angiogenesis and promotion of apoptosis. HA/CS NPs resulted to be massively internalized in CD44+ human mesenchymal stem cells via CD44 receptor-mediated endocytosis. HA/CS NPs selectiveness towards CD44 was highlighted by blocking CD44 receptor by anti-CD44 primary antibody and by comparison to CS-based NPs cellular uptake. Eventually, high effectiveness in inhibiting cell proliferation was demonstrated on-chip synthetized EVE loaded HA/CS NPs by tracking in vitro DNA synthesis.

17.
Polymers (Basel) ; 12(6)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575840

RESUMO

Electrospun scaffolds made of nano- and micro-fibrous non-woven mats from biodegradable polymers have been intensely investigated in recent years. In this field, polymer-based materials are broadly used for biomedical applications since they can be managed in high scale, easily shaped, and chemically changed to tailor their specific biologic properties. Nonetheless polymeric materials can be reinforced with inorganic materials to produce a next-generation composite with improved properties. Herein, the role of graphene nanoplatelets (GNPs) on electrospun poly-l-lactide-co-poly-ε-caprolactone (PLA-PCL, 70:30 molar ratio) fibers was investigated. Microfibers of neat PLA-PCL and with different amounts of GNPs were produced by electrospinning and they were characterized for their physicochemical and biologic properties. Results showed that GNPs concentration notably affected the fibers morphology and diameters distribution, influenced PLA-PCL chain mobility in the crystallization process and tuned the mechanical and thermal properties of the electrospun matrices. GNPs were also liable of slowing down copolymer degradation rate in simulated physiological environment. However, no toxic impurities and degradation products were pointed out up to 60 d incubation. Furthermore, preliminary biologic tests proved the ability of the matrices to enhance fibroblast cells attachment and proliferation probably due to their unique 3D-interconnected structure.

18.
J Microencapsul ; 26(6): 535-43, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18855198

RESUMO

A novel formulation based on chondroitin sulphate/chitosan microspheres (CS/CH) has been investigated for oral delivery of macromolecules using ovalbumin as the model protein (OVA). The microspheres were prepared by a new emulsion-complex coacervation method. Physico-chemical properties of the polymers constituting microparticulate matrix were investigated by IR, DSC, TGA and X-ray diffraction analyses. In vitro tests were performed to evaluate the drug delivery system degradation and the protein release under conditions simulating the intestinal fluids. The ability of colonic enzymes to degrade the microparticulate systems was simulated employing the chondroitinase ABC enzyme. Results showed that the different CS/CH compositions influenced both microparticles stability and the protein release rate. Only the microspheres composed by 1:1 chondroitin sulphate-chitosan ratio achieved an OVA release profile suitable to a possible colon targeting. These microspheres released approximately 30% of ovalbumin encapsulated in 24 h in the different aqueous media tested, while they released 100% of protein in the presence of chondroitinase. The preliminary results demonstrated that chondroitin sulphate-chitosan microspheres can be a suitable delivery system for protein drug envisaged to oral administration.


Assuntos
Quitosana , Condroitina , Microesferas , Proteínas/administração & dosagem , Administração Oral , Animais , Galinhas , Quitosana/química , Condroitina/química , Condroitina ABC Liase/administração & dosagem , Portadores de Fármacos/química , Ovalbumina/administração & dosagem , Proteus vulgaris/enzimologia , Solubilidade
19.
Pharmaceutics ; 11(4)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987212

RESUMO

The advent and growth of resistance phenomena to antibiotics has reached critical levels, invalidating the action of a majority of antibiotic drugs currently used in the clinical field. Several innovative techniques, such as the nanotechnology, can be applied for creating innovative drug delivery systems designed to modify drug release itself and/or drug administration route; moreover, they have proved suitable for overcoming the phenomenon of antibiotic resistance. Electrospun nanofibers, due to their useful structural properties, are showing promising results as antibiotic release devices for preventing bacteria biofilm formation after surgical operation and for limiting resistance phenomena. In this work gentamicin sulfate (GS) was loaded into polylactide-co-polycaprolactone (PLA-PCL) electrospun nanofibers; quantification and in vitro drug release profiles in static and dynamic conditions were investigated; GS kinetic release from nanofibers was studied using mathematical models. A preliminary microbiological test was carried out towards Staphylococcus aureus and Escherichia coli bacteria.

20.
Eur J Pharm Biopharm ; 70(1): 58-65, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18547793

RESUMO

Prolidase loaded chitosan nanoparticles were set up in order to suggest an innovative therapeutic approach for Prolidase Deficiency (PD), a rare autosomal inherited disorder of the connective tissue. The satisfactory drug loading efficiency (42.6+/-2.1%) as well as the suitable physical characteristics (mean diameter of 365.5+/-35.1 nm and a positive zeta-potential of 17.94+/-0.12 mV) was achieved. In order to verify the compatibility of the chitosan nanoparticles with cells, the influence of the nanoparticles on the growth and the viability (MTT assay) of cultured skin fibroblasts were determined: the nanoparticles showed a good biocompatibility up to 5 microg of chitosan/10,000 fibroblasts. Uptake of chitosan nanoparticles by fibroblasts was verified by confocal microscopy using FITC-labelled chitosan nanoparticles. The ex vivo experiments were performed by incubating different amounts of prolidase loaded chitosan nanoparticles with skin human fibroblasts from PD patients for scheduled times. The restored prolidase activity was quantitatively monitored by a capillary electrophoretic method and confirmed by cells morphological observations. Standing from the nanoparticles internalization, the enzymatic activity was progressively restored reaching the best value (about 66%) after 5 days of co-incubation. Moreover, prolidase loaded chitosan nanoparticles permitted to restore prolidase activity in PD fibroblasts for a prolonged period of time (8 days).


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Quitosana/química , Dipeptidases/farmacologia , Portadores de Fármacos , Fibroblastos/efeitos dos fármacos , Nanopartículas , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Química Farmacêutica , Quitosana/toxicidade , Dipeptidases/química , Dipeptidases/deficiência , Dipeptidases/uso terapêutico , Relação Dose-Resposta a Droga , Eletroforese Capilar , Endocitose , Estabilidade Enzimática , Fibroblastos/enzimologia , Humanos , Microscopia Confocal , Tamanho da Partícula , Solubilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA