Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 334, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739161

RESUMO

Aerobic granular sludge (AGS) and conventional activated sludge (CAS) are two different biological wastewater treatment processes. AGS consists of self-immobilised microorganisms that are transformed into spherical biofilms, whereas CAS has floccular sludge of lower density. In this study, we investigated the treatment performance and microbiome dynamics of two full-scale AGS reactors and a parallel CAS system at a municipal WWTP in Sweden. Both systems produced low effluent concentrations, with some fluctuations in phosphate and nitrate mainly due to variations in organic substrate availability. The microbial diversity was slightly higher in the AGS, with different dynamics in the microbiome over time. Seasonal periodicity was observed in both sludge types, with a larger shift in the CAS microbiome compared to the AGS. Groups important for reactor function, such as ammonia-oxidising bacteria (AOB), nitrite-oxidising bacteria (NOB), polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs), followed similar trends in both systems, with higher relative abundances of PAOs and GAOs in the AGS. However, microbial composition and dynamics differed between the two systems at the genus level. For instance, among PAOs, Tetrasphaera was more prevalent in the AGS, while Dechloromonas was more common in the CAS. Among NOB, Ca. Nitrotoga had a higher relative abundance in the AGS, while Nitrospira was the main nitrifier in the CAS. Furthermore, network analysis revealed the clustering of the various genera within the guilds to modules with different temporal patterns, suggesting functional redundancy in both AGS and CAS. KEY POINTS: • Microbial community succession in parallel full-scale aerobic granular sludge (AGS) and conventional activated sludge (CAS) processes. • Higher periodicity in microbial community structure in CAS compared to in AGS. • Similar functional groups between AGS and CAS but different composition and dynamics at genus level.


Assuntos
Bactérias , Reatores Biológicos , Microbiota , Esgotos , Esgotos/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Aerobiose , Suécia , Glicogênio/metabolismo , Amônia/metabolismo , Nitritos/metabolismo , Nitratos/metabolismo , Fosfatos/metabolismo , Purificação da Água/métodos
2.
Environ Sci Technol ; 57(19): 7431-7441, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37130040

RESUMO

The occurrence of pharmaceuticals in the aquatic environment is a global water quality challenge for several reasons, such as deleterious effects on ecological and human health, antibiotic resistance development, and endocrine-disrupting effects on aquatic organisms. To optimize their removal from the water cycle, understanding the processes during biological wastewater treatment is crucial. Time-of-flight secondary ion mass spectrometry imaging was successfully applied to investigate and analyze the distribution of pharmaceuticals as well as endogenous molecules in the complex biological matrix of biofilms for wastewater treatment. Several compounds and their localization were identified in the biofilm section, including citalopram, ketoconazole, ketoconazole transformation products, and sertraline. The images revealed the pharmaceuticals gathered in distinct sites of the biofilm matrix. While citalopram penetrated the biofilm deeply, sertraline remained confined in its outer layer. Both pharmaceuticals seemed to mainly colocalize with phosphocholine lipids. Ketoconazole concentrated in small areas with high signal intensity. The approach outlined here presents a powerful strategy for visualizing the chemical composition of biofilms for wastewater treatment and demonstrates its promising utility for elucidating the mechanisms behind pharmaceutical and antimicrobial removal in biological wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Humanos , Eliminação de Resíduos Líquidos/métodos , Citalopram/análise , Citalopram/farmacologia , Cetoconazol/análise , Cetoconazol/farmacologia , Sertralina/análise , Sertralina/farmacologia , Espectrometria de Massa de Íon Secundário , Poluentes Químicos da Água/análise , Águas Residuárias , Biofilmes , Preparações Farmacêuticas
3.
Environ Microbiol ; 24(5): 2348-2360, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415863

RESUMO

Bacteria in the order 'Candidatus Brocadiales' within the phylum Planctomycetes (Planctomycetota) have the remarkable ability to perform anaerobic ammonium oxidation (anammox). Two families of anammox bacteria with different biogeographical distributions have been reported, marine Ca. Scalinduaceae and freshwater Ca. Brocadiaceae. Here we report evidence of three new species within a novel genus and family of anammox bacteria, which were discovered in biofilms of a subsea road tunnel under a fjord in Norway. In this particular ecosystem, the nitrogen cycle is likely fuelled by ammonia from organic matter degradation in the fjord sediments and the rock mass above the tunnel, resulting in the growth of biofilms where anammox bacteria can thrive under oxygen limitation. We resolved several metagenome-assembled genomes (MAGs) of anammox bacteria, including three Ca. Brocadiales MAGs that could not be classified at the family level. MAGs of this novel family had all the diagnostic genes for a full anaerobic ammonium oxidation pathway in which nitrite was probably reduced by a NirK-like reductase. A survey of published molecular data indicated that this new family of anammox bacteria occurs in many marine sediments, where its members presumably would contribute to nitrogen loss.


Assuntos
Compostos de Amônio , Metagenoma , Compostos de Amônio/metabolismo , Oxidação Anaeróbia da Amônia , Anaerobiose , Bactérias , Bactérias Anaeróbias/metabolismo , Ecossistema , Oxirredução
4.
J Environ Manage ; 316: 115202, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35550956

RESUMO

Wastewater infrastructure has a long lifetime and is subject to changing conditions and demands. When plans are made to upgrade or build new infrastructure, transdisciplinary planning processes and a robust analysis of future conditions are needed to make sustainable choices. Here, we provide a stepwise collaborative planning process in which future scenarios are developed together with local stakeholders and expert groups. The process was implemented at one of the largest wastewater treatment plants (WWTPs) in Scandinavia. With a combination of workshops and the use of a web-based digital tool, future scenarios including flows, pollutant loads, and treatment requirements could be created. Furthermore, sustainability prioritizations affecting the WWTP, were identified. The future scenarios developed for the WWTP in the case study, predict stricter and new regulations, constant or lower future loads and ambiguous future flows. The highest ranked sustainability priority was low resource and energy consumption together with low CO2 footprint. The quantified future scenarios developed in the planning process were used as input to a process model to show the consequences they would have on the WWTP in the case study. Applying this collaborative process revealed future scenarios with many, sometimes conflicting, expectations on future WWTPs. It also highlighted needs for improvements of both the collection system and the WWTP.


Assuntos
Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos
5.
Environ Sci Technol ; 53(9): 4912-4921, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30969774

RESUMO

Granular sludge is an efficient and compact biofilm process for wastewater treatment. However, the ecological factors involved in microbial community assembly during the granular biofilm formation are poorly understood, and little is known about the reproducibility of the process. Here, three replicate bioreactors were used to investigate microbial succession during the formation of granular biofilms. We identified three successional phases. During the initial phase, the successional turnover was high and α-diversity decreased as a result of the selection of taxa adapted to grow on acetate and form aggregates. Despite these dynamic changes, the microbial communities in the replicate reactors were similar. The second successional phase occurred when the settling time was rapidly decreased to selectively retain granules in the reactors. The influence of stochasticity on succession increased and new niches were created as granules emerged, resulting in temporarily increased α-diversity. The third successional phase occurred when the settling time was kept stable and granules dominated the biomass. Turnover was low, and selection resulted in the same abundant taxa in the reactors, but drift, which mostly affected low-abundant community members, caused the community in one reactor to diverge from the other two. Even so, performance was stable and similar between reactors.


Assuntos
Reatores Biológicos , Esgotos , Biofilmes , Reprodutibilidade dos Testes , Processos Estocásticos , Eliminação de Resíduos Líquidos
6.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29222104

RESUMO

The enrichment of CO2-reducing microbial biocathodes is challenging. Previous research has shown that a promising approach could be to first enrich bioanodes and then lower the potential so the electrodes are converted into biocathodes. However, the effect of such a transition on the microbial community on the electrode has not been studied. The goal of this study was thus to compare the start-up of biocathodes from preenriched anodes with direct start-up from bare electrodes and to investigate changes in microbial community composition. The effect of three electrode materials on the long-term performance of the biocathodes was also investigated. In this study, preenrichment of acetate-oxidizing bioanodes did not facilitate the start-up of biocathodes. It took about 170 days for the preenriched electrodes to generate substantial cathodic current, compared to 83 days for the bare electrodes. Graphite foil and carbon felt cathodes produced higher current at the beginning of the experiment than did graphite rods. However, all electrodes produced similar current densities at the end of the over 1-year-long study (2.5 A/m2). Methane was the only product detected during operation of the biocathodes. Acetate was the only product detected after inhibition of the methanogens. Microbial community analysis showed that Geobacter sp. dominated the bioanodes. On the biocathodes, the Geobacter sp. was succeeded by Methanobacterium spp., which made up more than 80% of the population. After inhibition of the methanogens, Acetobacterium sp. became dominant on the electrodes (40% relative abundance). The results suggested that bioelectrochemically generated H2 acted as an electron donor for CO2 reduction.IMPORTANCE In microbial electrochemical systems, living microorganisms function as catalysts for reactions on the anode and/or the cathode. There is a variety of potential applications, ranging from wastewater treatment and biogas generation to production of chemicals. Systems with biocathodes could be used to reduce CO2 to methane, acetate, or other high-value chemicals. The technique can be used to convert solar energy to chemicals. However, enriching biocathodes that are capable of CO2 reduction is more difficult and less studied than enriching bioanodes. The effect of different start-up strategies and electrode materials on the microbial communities that are enriched on biocathodes has not been studied. The purpose of this study was to investigate two different start-up strategies and three different electrode materials for start-up and long-term operation of biocathodes capable of reducing CO2 to valuable biochemicals.


Assuntos
Fontes de Energia Bioelétrica , Dióxido de Carbono/metabolismo , Técnicas Eletroquímicas/métodos , Microbiota , Biocombustíveis , Técnicas Eletroquímicas/instrumentação , Eletrodos , Euryarchaeota/metabolismo , Grafite , Metano/metabolismo , Methanobacterium/metabolismo , Energia Solar
7.
Crit Rev Biotechnol ; 38(6): 801-816, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29400086

RESUMO

Environmental deterioration together with the need for water reuse and the increasingly restrictive legislation of water quality standards have led to a demand for compact, efficient and less energy consuming technologies for wastewater treatment. Aerobic granular sludge and membrane bioreactors (MBRs) are two technologies with several advantages, such as small footprint, high-microbial density and activity, ability to operate at high organic- and nitrogen-loading rates, and tolerance to toxicity. However, they also have some disadvantages. The aerobic granular sludge process generally requires post-treatment in order to fulfill effluent standards and MBRs suffer from fouling of the membranes. Integrating the two technologies could be a way of combining the advantages and addressing the main problems associated with both processes. The use of membranes to separate the aerobic granules from the treated water would ensure high-quality effluents suitable for reuse. Moreover, the use of granular sludge in MBRs has been shown to reduce fouling. Several recent studies have shown that the aerobic granular membrane bioreactor (AGMBR) is a promising hybrid process with many attractive features. However, major challenges that have to be addressed include how to achieve granulation and maintain granular stability during continuous operation of reactors. This paper aims to review the current state of research on AGMBR technology while drawing attention to relevant findings and highlight current limitations.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Incrustação Biológica , Membranas Artificiais , Esgotos
8.
Appl Microbiol Biotechnol ; 102(12): 5005-5020, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29705957

RESUMO

Granular activated sludge has gained increasing interest due to its potential in treating wastewater in a compact and efficient way. It is well-established that activated sludge can form granules under certain environmental conditions such as batch-wise operation with feast-famine feeding, high hydrodynamic shear forces, and short settling time which select for dense microbial aggregates. Aerobic granules with stable structure and functionality have been obtained with a range of different wastewaters seeded with different sources of sludge at different operational conditions, but the microbial communities developed differed substantially. In spite of this, granule instability occurs. In this review, the available literature on the mechanisms involved in granulation and how it affects the effluent quality is assessed with special attention given to the microbial interactions involved. To be able to optimize the process further, more knowledge is needed regarding the influence of microbial communities and their metabolism on granule stability and functionality. Studies performed at conditions similar to full-scale such as fluctuation in organic loading rate, hydrodynamic conditions, temperature, incoming particles, and feed water microorganisms need further investigations.


Assuntos
Esgotos/química , Purificação da Água/métodos , Aerobiose , Reatores Biológicos , Temperatura , Eliminação de Resíduos Líquidos , Microbiologia da Água
9.
Crit Rev Environ Sci Technol ; 46(7): 635-672, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27453679

RESUMO

The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants.

10.
Water Sci Technol ; 69(7): 1359-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718325

RESUMO

Microbial bioelectrochemical systems (BESs) utilize living microorganisms to drive oxidation and reduction reactions at solid electrodes. BESs could potentially be used at municipal wastewater treatment plants (WWTPs) to recover the energy content of organic matter, to produce chemicals useful at the site, or to monitor and control biological treatment processes. In this paper, we review bioelectrochemical technologies that could be applied for municipal wastewater treatment. Sjölunda WWTP in Malmö, Sweden, is used as an example to illustrate how the different technologies potentially could be integrated into an existing treatment plant and the impact they could have on the plant's utilization of energy and chemicals.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água
11.
Environ Sci Pollut Res Int ; 31(4): 5866-5880, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38133763

RESUMO

Stabilization and solidification (S/S) is known to improve the structural properties of sediment and reduce contaminant mobility, enabling the utilization of dredged contaminated sediment. Further reduction of contaminants (e.g., tributyltin (TBT) and metals) can be done using electrochemical treatment prior to S/S and could potentially minimize contaminant leaching. This is the first study on how electrochemical pretreatment affects the strength and leaching properties of stabilized sediments. It also investigates how salinity and organic carbon in the curing liquid affect the stabilized sediment.The results showed that the electrolysis reduced the content of TBT by 22% and zinc by 44% in the sediment. The electrolyzed stabilized samples met the requirements for compression strength and had a reduced surface leaching of zinc. Curing in saline water was beneficial for strength development and reduced the leaching of TBT compared to curing in fresh water. The results indicate that pretreatment prior to stabilization could be beneficial in reducing contaminant leaching and recovering metals from the sediment. The conclusion is that a better understanding of the changes in the sediment caused by electrochemical treatment and how these changes interact with stabilization reactions is needed. In addition, it is recommended to investigate the strength and leaching behavior in environments similar to the intended in situ conditions.


Assuntos
Metais Pesados , Metais Pesados/química , Zinco/química , Carbono , Água Doce , Ácidos
12.
Microbiome ; 12(1): 51, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475926

RESUMO

BACKGROUND: Partial nitritation-anammox (PNA) is a biological nitrogen removal process commonly used in wastewater treatment plants for the treatment of warm and nitrogen-rich sludge liquor from anaerobic digestion, often referred to as sidestream wastewater. In these systems, biofilms are frequently used to retain biomass with aerobic ammonia-oxidizing bacteria (AOB) and anammox bacteria, which together convert ammonium to nitrogen gas. Little is known about how these biofilm communities develop, and whether knowledge about the assembly of biofilms in natural communities can be applied to PNA biofilms. RESULTS: We followed the start-up of a full-scale PNA moving bed biofilm reactor for 175 days using shotgun metagenomics. Environmental filtering likely restricted initial biofilm colonization, resulting in low phylogenetic diversity, with the initial microbial community comprised mainly of Proteobacteria. Facilitative priority effects allowed further biofilm colonization, with the growth of initial aerobic colonizers promoting the arrival and growth of anaerobic taxa like methanogens and anammox bacteria. Among the early colonizers were known 'oligotrophic' ammonia oxidizers including comammox Nitrospira and Nitrosomonas cluster 6a AOB. Increasing the nitrogen load in the bioreactor allowed colonization by 'copiotrophic' Nitrosomonas cluster 7 AOB and resulted in the exclusion of the initial ammonia- and nitrite oxidizers. CONCLUSIONS: We show that complex dynamic processes occur in PNA microbial communities before a stable bioreactor process is achieved. The results of this study not only contribute to our knowledge about biofilm assembly and PNA bioreactor start-up but could also help guide strategies for the successful implementation of PNA bioreactors. Video Abstract.


Assuntos
Amônia , Oxidação Anaeróbia da Amônia , Filogenia , Esgotos/microbiologia , Bactérias , Reatores Biológicos/microbiologia , Nitrogênio , Biofilmes , Oxirredução
13.
J Hazard Mater ; 468: 133532, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387172

RESUMO

Untreated stormwater is a major source of microplastics, organic pollutants, metals, and nutrients in urban water courses. The aim of this study was to improve the knowledge about the start-up periods of bioretention filters. A rain garden pilot facility with 13 bioretention filters was constructed and stormwater from a highway and adjacent impervious surfaces was used for irrigation for ∼12 weeks. Selected plants (Armeria maritima, Hippophae rhamnoides, Juncus effusus, and Festuca rubra) was planted in ten filters. Stormwater percolated through the filters containing waste-to-energy bottom ash, biochar, or Sphagnum peat, mixed with sandy loam. Influent and effluent samples were taken to evaluate removal of the above-mentioned pollutants. All filters efficiently removed microplastics >10 µm, organic pollutants, and most metals. Copper leached from all filters initially but was significantly reduced in the biochar filters at the end of the period, while the other filters showed a declining trend. All filters leached nutrients initially, but concentrations decreased over time, and the biochar filters had efficiently reduced nitrogen after a few weeks. To conclude, all the filters effectively removed pollutants during the start-up period. Before being recommended for full-scale applications, the functionality of the filters after a longer period of operation should be evaluated.


Assuntos
Carvão Vegetal , Poluentes Ambientais , Microplásticos , Plásticos , Metais , Chuva , Plantas
14.
Environ Technol ; 34(17-20): 2737-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24527636

RESUMO

Bioelectrochemical systems can be used to energy-efficiently produce hydrogen peroxide (H2O2) from wastewater. Organic compounds in the wastewater are oxidized by microorganisms using the anode as electron acceptor. H2O2 is produced by reduction of oxygen on the cathode. In this study, we demonstrate for the first time production of high concentrations of H2O2 production from real municipal wastewater. A concentration of 2.26 g/L H2O2 was produced in 9 h at 8.3 kWh/kgH2O2. This concentration could potentially be useful for membrane cleaning at membrane bioreactor wastewater treatment plants. With an acetate-containing nutrient medium as anode feed, a H2O2 concentration of 9.67 g/L was produced in 21 h at an energy cost of 3.0 kWh/kgH2O2. The bioelectrochemical reactor used in this study suffered from a high internal resistance, most likely caused by calcium carbonate deposits on the cathode-facing side of the cation exchange membrane separating the anode and cathode compartments.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Peróxido de Hidrogênio/metabolismo , Águas Residuárias/química , Reatores Biológicos/microbiologia , Eletrodos , Peróxido de Hidrogênio/análise , Oxirredução , Purificação da Água/métodos
15.
Sci Total Environ ; 893: 164792, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321507

RESUMO

Sustainability assessment using multicriteria analysis (MCA) is a structured way of including criteria from the three sustainability dimensions (environmental, economic, and social) when comparing different alternatives. A problem with the conventional MCA methods is that the consequences of the weights given to different criteria are not transparent. Here, we amend the simple additive weighting MCA method with weighted score ratios (WSRs), which are used during the sustainability assessment to show how the weights affect the valuation of the criteria (e.g., cost per kg CO2e). This enables comparisons to other sustainability assessments and reference values from society, which increases the transparency and can make weighting more objective. We applied the method to a comparison of technologies for removal of pharmaceutical residues from wastewater. Due to growing concern about the effects that pharmaceutical residues can have on our environment, implementations of advanced technologies are increasing. However, they entail high requirements of energy and resources. Therefore, many aspects must be considered to make a sustainable choice of technology. In this study, a sustainability assessment was performed of ozonation, powdered activated carbon and granular activated carbon for removal of pharmaceutical residues at a large wastewater treatment plant (WWTP) in Sweden. The outcome showed that powdered activated carbon is the least sustainable choice for the studied WWTP. Whether ozonation or granular activated carbon is most sustainable depends on how climate impact and energy use are valued. The total sustainability of ozonation is affected by how the electricity is assumed to be produced, whereas for granular activated carbon it depends on whether the carbon source is of renewable or fossil origin. Using WSRs allowed the participants in the assessment to make conscious choices on how they weighted different criteria in relation to how these criteria are valued in society at large.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Carvão Vegetal/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Pós , Ozônio/química , Eliminação de Resíduos Líquidos/métodos
16.
Biofilm ; 6: 100145, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37575957

RESUMO

Granular sludge is a biofilm process used for wastewater treatment which is currently being implemented worldwide. It is important to understand how disturbances affect the microbial community and performance of reactors. Here, two acetate-fed replicate reactors were inoculated with acclimatized sludge and the reactor performance, and the granular sludge microbial community succession were studied for 149 days. During this time, the microbial community was challenged by periodically removing half of the reactor biomass, subsequently increasing the food-to-microorganism (F/M) ratio. Diversity analysis together with null models show that overall, the microbial communities were resistant to the disturbances, observing some minor effects on polyphosphate-accumulating and denitrifying microbial communities and their associated reactor functions. Community turnover was driven by drift and random granule loss, and stochasticity was the governing ecological process for community assembly. These results evidence the aerobic granular sludge process as a robust system for wastewater treatment.

17.
Biofilm ; 6: 100161, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37859795

RESUMO

In a microbial electrolysis cell (MEC), the oxidization of organic compounds is facilitated by an electrogenic biofilm on the anode surface. The biofilm community composition determines the function of the system. Both deterministic and stochastic factors affect the community, but the relative importance of different factors is poorly understood. Anode material is a deterministic factor as materials with different properties may select for different microorganisms. Ecological drift is a stochastic factor, which is amplified by dispersal limitation between communities. Here, we compared the effects of three anode materials (graphene, carbon cloth, and nickel) with the effect of dispersal limitation on the function and biofilm community assembly. Twelve MECs were operated for 56 days in four hydraulically connected loops and shotgun metagenomic sequencing was used to analyse the microbial community composition on the anode surfaces at the end of the experiment. The anode material was the most important factor affecting the performance of the MECs, explaining 54-80 % of the variance observed in peak current density, total electric charge generation, and start-up lag time, while dispersal limitation explained 10-16 % of the variance. Carbon cloth anodes had the highest current generation and shortest lag time. However, dispersal limitation was the most important factor affecting microbial community structure, explaining 61-98 % of the variance in community diversity, evenness, and the relative abundance of the most abundant taxa, while anode material explained 0-20 % of the variance. The biofilms contained nine Desulfobacterota metagenome-assembled genomes (MAGs), which made up 64-89 % of the communities and were likely responsible for electricity generation in the MECs. Different MAGs dominated in different MECs. Particularly two different genotypes related to Geobacter benzoatilyticus competed for dominance on the anodes and reached relative abundances up to 83 %. The winning genotype was the same in all MECs that were hydraulically connected irrespective of anode material used.

18.
Water Sci Technol ; 66(4): 831-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22766874

RESUMO

In a bioelectrochemical system, the energy content in dissolved organic matter can be used to power the production of hydrogen peroxide (H(2)O(2)), which is a potentially useful chemical at wastewater treatment plants. H(2)O(2) can be produced by the cathodic reduction of oxygen. We investigated four types of gas-diffusion electrodes (GDEs) for this purpose. A GDE made of carbon nanoparticles bound with 30% polytetrafluoroethylene (PTFE) (wt./wt.C) to a carbon fiber paper performed best and catalyzed H(2)O(2) production from oxygen in air with a coulombic efficiency of 95.1%. We coupled the GDE to biological anodes in two bioelectrochemical reactors. When the anodes were fed with synthetic wastewater containing acetate they generated a current of up to ∼0.4 mA/mL total anode compartment volume. H(2)O(2) concentrations of ∼0.2 and ∼0.5% could be produced in 5 mL catholyte in 9 and 21 h, respectively. When the anodes were fed with real wastewater, the generated current was ∼0.1 mA/mL and only 84 mg/L of H(2)O(2) was produced.


Assuntos
Reatores Biológicos , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Acetatos/química , Carbono/química , Catálise , Difusão , Eletroquímica , Eletrodos , Nanopartículas/química , Oxigênio/química , Politetrafluoretileno/química
19.
Front Microbiol ; 13: 959211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590422

RESUMO

In single-chamber microbial electrolysis cells (MECs), organic compounds are oxidized at the anode, liberating electrons that are used for hydrogen evolution at the cathode. Microbial communities on the anode and cathode surfaces and in the bulk liquid determine the function of the MEC. The communities are complex, and their assembly processes are poorly understood. We investigated MEC performance and community composition in nine MECs with a carbon cloth anode and a cathode of carbon nanoparticles, titanium, or stainless steel. Differences in lag time during the startup of replicate MECs suggested that the initial colonization by electrogenic bacteria was stochastic. A network analysis revealed negative correlations between different putatively electrogenic Deltaproteobacteria on the anode. Proximity to the conductive anode surface is important for electrogens, so the competition for space could explain the observed negative correlations. The cathode communities were dominated by hydrogen-utilizing taxa such as Methanobacterium and had a much lower proportion of negative correlations than the anodes. This could be explained by the diffusion of hydrogen throughout the cathode biofilms, reducing the need to compete for space.

20.
Environ Sci Pollut Res Int ; 29(19): 27988-28004, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34985631

RESUMO

Metal and tributyltin (TBT) contaminated sediments are problematic for sediment managers and the environment. This study is the first to compare Fenton's reagent and electrochemical treatment as remediation methods for the removal of TBT and metals using laboratory-scale experiments on contaminated dredged sediment. The costs and the applicability of the developed methods were also compared and discussed. Both methods removed > 98% TBT from TBT-spiked sediment samples, while Fenton's reagent removed 64% of the TBT and electrolysis 58% of the TBT from non-spiked samples. TBT in water phase was effectively degraded in both experiments on spiked water and in leachates during the treatment of the sediment. Positive correlations were observed between TBT removal and the added amount of hydrogen peroxide and current density. Both methods removed metals from the sediment, but Fenton's reagent was identified as the most potent option for effective removal of both metals and TBT, especially from highly metal-contaminated sediment. However, due to risks associated with the required chemicals and low pH level in the sediment residue following the Fenton treatment, electrochemical treatment could be a more sustainable option for treating larger quantities of contaminated sediment.


Assuntos
Compostos Orgânicos de Estanho , Poluentes Químicos da Água , Sedimentos Geológicos , Peróxido de Hidrogênio/química , Ferro , Metais , Suécia , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA