Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(11): 7305-7312, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451209

RESUMO

The kinetics of hydrogen evolution reaction (HER) in alkaline media, a reaction central to alkaline water electrolyzers, is not accurately captured by traditional adsorption-based activity descriptors. As a result, the exact mechanism and the main driving force for the water reduction or HER rate remain hotly debated. Here, we perform extensive kinetic measurements on the pH- and cation-dependent HER rate on Pt single-crystal electrodes in alkaline conditions. We find that cations interacting with Pt step sites control the HER activity, while they interact only weakly with Pt(111) and Pt(100) terraces and, therefore, cations do not affect HER kinetics on terrace sites. This is reflected by divergent activity trends as a function of pH as well as cation concentration on stepped Pt surfaces vs Pt surfaces that do not feature steps, such as Pt(111). We show that HER activity can be optimized by rationally tuning these step-cation interactions via selective adatom deposition at the steps and by choosing an optimal electrolyte composition. Our work shows that the catalyst and the electrolyte must be tailored in conjunction to achieve the highest possible HER activity.

2.
ACS Catal ; 11(23): 14328-14335, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34888121

RESUMO

In this work, we study how the cation identity and concentration alter the kinetics of the hydrogen evolution reaction (HER) on platinum and gold electrodes. A previous work suggested an inverted activity trend as a function of alkali metal cation when comparing the performance of platinum and gold catalysts in alkaline media. We show that weakly hydrated cations (K+) favor HER on gold only at low overpotentials (or lower alkalinity), whereas in more alkaline pH (or high overpotentials), a higher activity is observed using electrolytes containing strongly hydrated cations (Li+). We find a similar trend for platinum; however, the inhibition of HER by weakly hydrated cations on platinum is observed already at lower alkalinity and lower cation concentrations, suggesting that platinum interacts more strongly with metal cations than gold. We propose that weakly hydrated cations stabilize the transition state of the water dissociation step more favorably due to their higher near-surface concentration in comparison to a strongly hydrated cation such as Li+. However, at high pH and consequently higher near-surface cation concentrations, the accumulation of these species at the outer Helmholtz plane inhibits HER. This is especially pronounced on platinum, where a change in the rate-determining step is observed at pH 13 when using a Li+- or K+-containing electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA