Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
ERJ Open Res ; 2(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27730163

RESUMO

Global surveillance and advances in vaccine technology are essential to answer the threat of influenza pandemics http://ow.ly/Yt3e4.

2.
PLoS One ; 11(3): e0150776, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26964038

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) and influenza A viruses are known to cause severe acute respiratory tract infections (SARIs) in children. For other viruses like human rhinoviruses (HRVs) this is less well established. Viral or bacterial co-infections are often considered essential for severe manifestations of these virus infections. OBJECTIVE: The study aims at identifying viruses that may cause SARI in children in the absence of viral and bacterial co-infections, at identifying disease characteristics associated with these single virus infections, and at identifying a possible correlation between viral loads and disease severities. STUDY DESIGN: Between April 2007 and March 2012, we identified children (<18 year) with or without a medical history, admitted to our paediatric intensive care unit (PICU) with SARI or to the medium care (MC) with an acute respiratory tract infection (ARTI) (controls). Data were extracted from the clinical and laboratory databases of our tertiary care paediatric hospital. Patient specimens were tested for fifteen respiratory viruses with real-time reverse transcriptase PCR assays and we selected patients with a single virus infection only. Typical bacterial co-infections were considered unlikely to have contributed to the PICU or MC admission based on C-reactive protein-levels or bacteriological test results if performed. RESULTS: We identified 44 patients admitted to PICU with SARI and 40 patients admitted to MC with ARTI. Twelve viruses were associated with SARI, ten of which were also associated with ARTI in the absence of typical bacterial and viral co-infections, with RSV and HRV being the most frequent causes. Viral loads were not different between PICU-SARI patients and MC-ARTI patients. CONCLUSION: Both SARI and ARTI may be caused by single viral pathogens in previously healthy children as well as in children with a medical history. No relationship between viral load and disease severity was identified.


Assuntos
Vírus da Influenza A , Influenza Humana/epidemiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sinciciais Respiratórios , Infecções Respiratórias , Doença Aguda , Adolescente , Criança , Pré-Escolar , Feminino , Hospitais Pediátricos , Humanos , Lactente , Masculino , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Índice de Gravidade de Doença , Centros de Atenção Terciária , Carga Viral
3.
Lancet Infect Dis ; 14(12): 1196-207, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25455987

RESUMO

BACKGROUND: Modified vaccinia virus Ankara (MVA) is a promising viral vector platform for the development of an H5N1 influenza vaccine. Preclinical assessment of MVA-based H5N1 vaccines showed their immunogenicity and safety in different animal models. We aimed to assess the safety and immunogenicity of the MVA-haemagglutinin-based H5N1 vaccine MVA-H5-sfMR in healthy individuals. METHODS: In a single-centre, double-blind phase 1/2a study, young volunteers (aged 18-28 years) were randomly assigned with a computer-generated list in equal numbers to one of eight groups and were given one injection or two injections intramuscularly at an interval of 4 weeks of a standard dose (10(8) plaque forming units [pfu]) or a ten times lower dose (10(7) pfu) of the MVA-H5-sfMR (vector encoding the haemagglutinin gene of influenza A/Vietnam/1194/2004 virus [H5N1 subtype]) or MVA-F6-sfMR (empty vector) vaccine. Volunteers and physicians who examined and administered the vaccine were masked to vaccine assignment. Individuals who received the MVA-H5-sfMR vaccine were eligible for a booster immunisation 1 year after the first immunisation. Primary endpoint was safety. Secondary outcome was immunogenicity. The trial is registered with the Dutch Trial Register, number NTR3401. FINDINGS: 79 of 80 individuals who were enrolled completed the study. No serious adverse events were identified. 11 individuals reported severe headache and lightheadedness, erythema nodosum, respiratory illness (accompanied by influenza-like symptoms), sore throat, or injection-site reaction. Most of the volunteers had one or more local (itch, pain, redness, and swelling) and systemic reactions (rise in body temperature, headache, myalgia, arthralgia, chills, malaise, and fatigue) after the first, second, and booster immunisations. Individuals who received the 10(7) dose had fewer systemic reactions. The MVA-H5-sfMR vaccine at 10(8) pfu induced significantly higher antibody responses after one and two immunisations than did 10(7) pfu when assessed with haemagglutination inhibition geometric mean titre at 8 weeks against H5N1 A/Vietnam/1194/2004 (30·2 [SD 3·8] vs 9·2 [2·3] and 108·1 [2·4] vs 15·8 [3·2]). 27 of 39 eligible individuals were enrolled in the booster immunisation study. A single shot of MVA-H5-sfMR 10(8) pfu prime immunisation resulted in higher antibody responses after the booster immunisation than did two shots of MVA-H5-sfMR at the ten times lower dose. INTERPRETATION: The MVA-based H5N1 vaccine was well tolerated and immunogenic and therefore the vaccine candidates arising from the MVA platform hold great promise for rapid development in response to a future influenza pandemic threat. However, the immunogenicity of this vaccine needs to be compared with conventional H5N1 inactivated non-adjuvanted vaccine candidates in head-to-head clinical trials. FUNDING: European Research Council.


Assuntos
Portadores de Fármacos , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Vaccinia virus/genética , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Método Duplo-Cego , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Voluntários Saudáveis , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Injeções Intramusculares , Masculino , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA